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Intended learning outcomes
By the end of this course, students will be able to  

❏ Analyze user tasks in terms of the levels of control and automation. 

❏ Recognize that different types of AI systems have different capabilities. 

❏Motivate the importance of reliability, safety, and trustworthy AI systems. 

❏ Choose types of AI that are suitable for the user tasks in their design project.
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Shneiderman’s Control × Automation 
quadrants
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4 Shneiderman (2022) Human-Centered Artificial Intelligence. Oxford University Press. (Chapters 6 and 8)
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48 PART 2: HUMAN-CENTERED AI FRAMEWORK

Table 6.1 Summary of the widely cited, but one-dimensional levels of
automation/autonomy

Level Description

The Computer:
10 (High) decides everything and acts autonomously, ignoring the human
9 informs the human only if the computer decides to
8 informs the human only if asked
7 executes automatically, then necessarily informs the human
6 allows the human a restricted time to veto before automatic execution
5 executes the suggestion, if the human approves
4 suggests one alternative
3 narrows the selection down to a few
2 offers a complete set of decision-and-action alternatives
1 (Low) offers no assistance; the human must take all decisions and actions

Adapted from Parasuraman et al.4

about ten levels from human control to computer autonomy (Table 6.1).3 Their
widely cited one-dimensional list continues to guide much of the research and
development, suggesting that increases in automation must come at the cost of
lowering human control. But this zero-sum assumption limits thinking about
ways to increase human control and the level of automation. There is a better
way.

Sheridan andVerplank’s ten levels of autonomy have beenwidely influential,
but critics noticed that it was incomplete, missing important aspects of what
users do. Over the years, there have beenmany refinements such as recognizing
that there were at least four stages of automation: (1) information acquisition,
(2) analysis of information, (3) decision or choice of action, and (4) execu-
tion of action.5 These stages open the door to thinking about whether users
might have greater control during some of the stages, especially during the
decision-making stage. Computers could present choices to the human opera-
tors, who might select the option for the computer to carry out. This nuanced
approach was on the right track towards identifying the combined strategy that
gives human control for decisions and supports automation when it is reliable.
The human operators may also make a note to suggest additional options or
clarifications that could be added to the next software update.

The four stages were an important refinement that helped keep the lev-
els of autonomy alive, even as critics continued to be troubled by the simple
one-dimensional framework, which assumed that more automation meant
less human control. Shifting to the two-dimensional framework for HCAI,
presented in Chapter 8, could liberate design thinking so as to produce
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Misleading one-dimensional thinking
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Shneiderman’s Control × Automation quadrants
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High computer automation

High human control

Low

Low

• Piano 
• Bicycle 

Camera • 
Elevator • 

Airbag • 
Pacemaker •

• Music box 
• Landmine

Shneiderman (2022) Human-Centered Artificial Intelligence. Oxford University Press. (Chapter 8)
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Shneiderman’s Control × Automation quadrants
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High computer automation

High human control

Low

Low

Human 
mastery

Computer 
control

Reliable, safe, 
trustworthy

• Piano 
• Bicycle 

Camera • 
Elevator • 

Airbag • 
Pacemaker •

• Music box 
• Landmine

: Design goals
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Exercise: Control × Automation
⏳ 15 minutes 👤👤 work in pairs on one laptop 

1. Go to the Miro board, find a place for your pair 

2. Copy your list from the spreadsheet and paste onto the Miro board (with 

Ctrl+V or Cmd+V) as sticky notes 

3.Work together to place them in the control × automation quadrants 

• Discuss why you decided on such a location 

• If you cannot agree on one location, make a copy, and place each 

copy in different locations 

• Aim for 10–12 sticky notes in the quadrants 

4. Last 5 minutes: Reflect on what you learned from the discussion. 

Write 1–3 insights from this activity in the poll linked to the left of 

your diagram
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Exercise: Control × Automation (continued)

⏳ 10 minutes 👤👤work in pairs 

Imagine a far future where technology has 

greatly advanced to an ideal state, and 

determine the location of each note. 

• If it should be changed, use the pen tool 

to draw an arrow to the new location 

• If not, you don’t need to do anything 

Last 3 minutes: Write one insight on the poll
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Evolved expectation
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High computer 
automation

High human 
control

Low

Low

Human 
mastery

Computer 
control

Reliable, safe, 
trustworthy

Images: Old car: Pixabay via Picryl •  Cadillac by That Hartford Guy, via Wikipedia • Waymo car by Dllu via Wikipedia

When technology and 
regulation mature, we 
should expect better 
technologies

https://picryl.com/media/oldtimer-auto-classic-transportation-traffic-74f86d
https://commons.wikimedia.org/w/index.php?curid=25151231
https://commons.wikimedia.org/w/index.php?curid=141214663


Human vigilance

• Computer controls become 

more reliable 

• Human operators only rarely 

need to intervene 

• Human attention lapse 

• They can no longer intervene 

quickly and correctly 

“sleeping at the wheel”
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trustworthy

Images: Old car: Pixabay via Picryl •  Cadillac by That Hartford Guy, via Wikipedia • Waymo car by Dllu via Wikipedia

https://picryl.com/media/oldtimer-auto-classic-transportation-traffic-74f86d
https://commons.wikimedia.org/w/index.php?curid=25151231
https://commons.wikimedia.org/w/index.php?curid=141214663


Reliable, safe, trustworthy

Reliable systems produce expected responses when 
needed. Supports human responsibility, fairness, and 
explainability. 

Cultures of safety are created by managers who focus on 
strategies that guide continuous refinement of training, 
operational practices, and root-cause failure analyses. 

A trustworthy system is one that deserves trust, even 
though stakeholders struggle to measure 
• Consumers do not have the skill or effort to assess it.  
• Rely on established independent organizations, e.g., 
consumer advocacy group or respected auditing firms 

• Rely on regulations by governmental bodies 
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“regular, honest, and cooperative 
behavior, based on commonly 
shared norms” 

— Francis Fukuyama’s definition of social 
trust

Shneiderman (2022) Human-Centered Artificial Intelligence. Oxford University Press. (Chapter 7)
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Shneiderman (2022) Human-Centered Artificial Intelligence. Oxford University Press. (Chapter 8)

Danger areas
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High computer automation

High human control
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Low

Human 
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control
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trustworthy

• Piano 
• Bicycle 

Camera • 
Elevator • 

Airbag • 
Pacemaker •

• Music box 
• Landmine

Excessive human control

Excessive com
puter autom

ation
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Excessive automation example

Boeing 737 MAX’s 
MCAS system 

• Angle of attack 
sensor fails 

• Automated system 
repeatedly pull the 
plane down 

• Pilot had to 
repeatedly  the 
plane pull up 

• 346 people died 
from two crashes in 
2018–19, 

15 Diagram: Zerohedge

https://www.zerohedge.com/news/2019-03-14/something-was-extraordinarily-wrong-doomed-boeing-swung-and-down-hundreds-feet


Excessive human control example

Abbott pain-killer pump 

• Nurse programs the concentration 

• intended:    5 mg / mL 

• entered:   0.5 mg / mL 

• Patient received 10x too much! 

• Device: ⬆︎, ⬇︎ buttons instead of number pad 

• Cost-saving  vs. life-saving

16 Photo via eBay
Lifecare PCS Plus II Infuser type 4100

https://www.ebay.com/itm/322241048823


Artificial 
Intelligence

Machine
Learning

Complex
Software 
Systems
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Deep
Learning

Diagram by Dan M. Russell & Peter Norvig



AI systems of the past
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Eliza (1964–1967)

Genealogy of ELIZA • You can try ELIZA yourself at https://anthay.github.io/eliza.html

1. Identify keywords 

2. If no keyword, use a preset response 

3. Figure out the context 

4. Choose transformations 

5. Generate responses

https://sites.google.com/view/elizagen-org/
https://anthay.github.io/eliza.html


AI systems of the past
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Dendral (1960–70):  
• Analyzes mass spectrometry 
• Generate possible molecular structures 
• Test them against chemistry knowledge base

IF 

there is a high peak at 71amu  
there is a high peak at 43amu  
there is a high peak at 86amu 
there is any peak at 58amu  

THEN 
there must be substructure:

Dendral history 
Diagram  by Tim Soderberg via LibreTexts

https://doi.org/10.1145/89482.89484
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book:_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/04:_Structure_Determination_I-_UV-Vis_and_Infrared_Spectroscopy_Mass_Spectrometry/4.03:_Mass_Spectrometry


AI systems of the past
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Evaluate each move by searching a 
large database of play patterns that 
were trained by looking at 
grandmaster games

Deep Blue (1997): chess champ

Photo:Kathy Willens/AP Images via Britannica 
Diagram from Chess.com

https://www.britannica.com/topic/Worry-About-Human-Not-Machine-Intelligence-2119055#/media/1/2119055/229418
https://www.chess.com/blog/Rinckens/how-does-the-deep-blue-algorithm-work


AI systems of the past
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Watson (2011): Jeopardy! champ

Diagram: Ferrucci et al. (2010) Building Watson 
Photo: IBM

https://doi.org/10.1609/aimag.v31i3.2303


AI Systems Today
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accounting, tax planning, and config-
uring computer systems.28

The prototypical exemplar for rep-
resenting knowledge in this paradigm 
is via symbolic relationships expressed 
in the form of “IF/THEN” rules,30 “se-
mantic networks,”35 or structured 
object representations.29 But it is dif-
ficult to express uncertainty in terms 
of these representations, let alone 
combine such uncertainties during 
inference, which prompted the devel-
opment of more principled graphical 
models for representing uncertainty in 
knowledge using probability theory.31

The exemplar in this paradigm was 
largely shaped by logic and the existing 
models of cognition from psychology, 
which viewed humans as having a long-
term and a short-term memory, and a 
mechanism for evoking them in a spe-
cific context. The knowledge declared 
by humans in expert systems, such as 
the rule “excess bilirubin high pallor,” 
constituted their long-term memory. 
An attention mechanism, also known 
as the inference engine or “control re-
gime,” evoked the rules depending on 
the context, and updated the system’s 
short-term memory accordingly. If a 
patient exhibited unusually high pal-
lor, for example, this symptom was 
noted in short-term memory and the 
appropriate rule was evoked from long-
term memory to hypothesize its cause, 
such as "excess bilirubin." In effect, the 
declaration of knowledge was separate 
from its application, which was con-
trolled by the attention mechanism.

Research in natural language pro-
cessing (NLP) was along similar lines, 
with researchers seeking to discover 
the rules of language. The expectation 
was that once these were fully speci-
fied, a machine would follow them in 
order to understand and generate lan-

sure of intelligence should consider 
how such capabilities are manifested 
across a wide range of tasks.

The Paradigm Shifts in AI
To understand the state of the art of AI 
and where it is heading, it is important 
to track its scientific history, especially 
the bottlenecks that stalled progress 
in each paradigm and the degree to 
which they were addressed by each 
paradigm shift.

The figure sketches out the his-
tory of AI from the expert systems 
era—which spanned the mid-1960s 
to the late 1980s—to the present. I do 
not cover the era of adversarial game-
playing algorithms and the emergence 
of graph-traversal search algorithms 
such as A*,16 which primarily fall into 
the realm of optimization and heuris-
tic search on well-specified problems. 
Indeed, game playing continues to be 
an active line of inquiry within AI, with 
the emergence of championship-level 
algorithms such as AlphaGo and its 
variants.42 I start with the era of knowl-
edge-based systems, which began to 
focus on the systematic representation 
and use of human knowledge at scale.

Expert systems. Expert systems are 
attractive in well-circumscribed do-
mains where human expertise is iden-
tifiable and definable. They perform 
well at specific tasks where this exper-
tise can be extracted through interac-
tions with humans, and it is typically 
represented in terms of relationships 
among situations and outcomes. AI 
was applied to diagnosis, planning, 
and design across a number of do-
mains, including healthcare, science, 
engineering, and business. The think-
ing was that if such systems performed 
at the level of human experts, they 
were intelligent.

An early successful demonstration 
of AI in medicine was the Internist 
system,33 which performed diagnosis 
in the field of internal medicine. In-
ternist represented expert knowledge 
using causal graphs and hierarchies 
relating diseases to symptoms. The 
rule-based expert system Mycin41 pro-
vided another early demonstration of 
diagnostic reasoning in the narrow 
domain of blood diseases. Expert sys-
tems were also successful in a number 
of other well-specified domains, such 
as engineering, mineral prospecting, 

guage.40 This turned out to be exceed-
ingly difficult to achieve.

The major hurdle of this paradigm 
of top-down knowledge specifica-
tion was the “knowledge engineering 
bottleneck.” It was challenging to ex-
tract reliable knowledge from experts, 
and equally difficult to represent and 
combine uncertainty in terms of rules. 
Collaborations between experts and 
knowledge engineers could take years 
or even decades, and the systems be-
came brittle at scale—rules that made 
sense in isolation often produced 
unexpected and undesirable results 
in the presence of many others. Fur-
thermore, researchers found that ex-
pert systems would often make errors 
in common-sense reasoning, which 
seemed intertwined with specialized 
knowledge. Evaluating such systems 
was also difficult, if one ever got to that 
stage. Human reasoning and language 
seemed much too complex and heter-
ogenous to be captured by top-down 
specification of relationships in this 
paradigm.

Machine learning. The center of 
gravity of AI began to tilt toward ma-
chine learning (ML) in the late 1980s 
and 1990s, with the maturation of da-
tabase technology, the emergence of 
the Internet, and the growing abun-
dance of observational and transac-
tional data.2 AI thinking shifted away 
from spoon-feeding highly specified 
human abstractions to the machine 
and toward automatically learning 
such relationships from data, guided 
by human intuition. While symbolic 
expert systems required humans to 
specify a model, ML enabled the ma-
chine to learn the model automati-
cally from curated examples. Model 
discovery was guided by a “loss func-
tion,” designed to directly or indi-

Figure. The history of artificial intelligence.

Expert
Systems

Machine
Learning

Deep
Learning

General 
Intelligence

Addressed
Knowledge
Engineering
bottleneck
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Feature

Engineering
bottleneck

Addresses
Customization

bottleneck
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Much of this type of knowledge be-
came available because of widespread 
communication on the Internet, where 
in the short span of a few decades, hu-
manity expressed thousands of years 
of its history in terms of language and 
images, along with social media and 
conversational data on a wide array of 
subjects. All humans became poten-
tial publishers and curators, providing 
the training data for AI to learn how to 
communicate fluently.

It is important to appreciate that in 
learning to communicate in natural 
language, AI has broken through two 
fundamental bottlenecks simultane-
ously. First, we are now able to com-
municate with machines on our terms 
rather than through cryptic computer 
languages and a restricted vocabu-
lary. This required solving a related 
problem: integrating and transferring 
knowledge about the world, including 
common sense, seamlessly into a con-
versation about any subject. Achiev-
ing this capability has required the 
machine to acquire the various types 
of knowledge simultaneously—exper-
tise, common sense, and tacit knowl-
edge—all of which are embedded in 
language. Secondly, now that the ma-
chine can understand us, we can com-
municate with it easily to create new 
things via language. This ability, where 
the machine can understand what we 
are saying well enough to maintain a 
conversation or create novel outputs 
for us according to language-based 
interactions, enables an entirely new 
kind of capability, enabling the ma-
chine to acquire high-quality training 
data seamlessly “from the wild” in par-
allel with its operation.

As in deep learning, the exemplar 
in the general intelligence paradigm is 
the DNN, whose properties we are now 
trying to understand, along with the 
general principles that underpin their 
performance. One such principle in 
the area of LLMs is that performance 
improves by increasing model com-
plexity, data size, and compute power 
across a wide range of tasks.20 These 
“scaling laws of AI” show that predic-
tive accuracy on the autocompletion 
task improves with increased compute 
power, model complexity, and data. If 
this measure of performance on auto-
completion is a good proxy for general 
intelligence, the scaling laws predict 

maintains such knowledge in a way 
that is easily transferrable across tasks 
and can be applied to novel situations.

Each paradigm shift moved AI clos-
er to general intelligence and greatly 
expanded the scope of applications of 
AI. Expert systems structured human 
knowledge to solve complex problems. 
Machine learning brought structured 
databases to life. Deep learning went 
further, enabling the machine to deal 
with structured and unstructured data 
about an application directly from the 
real world, as humans are able to do. 
Recent advances in DNNs have made it 
possible to create entirely new forms of 
output, previously assumed to be the 
purview of humans alone. This greatly 
expands the scope of AI into the cre-
ative arena in the arts, science, and 
business.

The recent shift to pre-trained mod-
els represents a fundamental depar-
ture from the previous paradigms, 
where knowledge was carefully ex-
tracted and represented. AI was an 
application, and tacit knowledge and 
common-sense reasoning were add-
ons that were separate from expertise. 
The CYC project26 was the first ma-
jor effort to explicitly teach the ma-
chine common sense. It did not work 
as the designers had hoped. There is 
too much tacit knowledge and com-
mon sense in human interaction that 
is evoked depending on context, and 
intelligence is much too complex and 
heterogenous to be compartmental-
ized and specified in the form of rules.

In contrast, pre-trained models, 
such as LLMs that learn through self-
supervision on uncurateda data, es-
chew boundaries, such as those in the 
pneumonia example. Rather, they inte-
grate specialized and general knowl-
edge, including data about peoples’ 
experiences across a range of subjects. 

sion towards general intelligence, as it 
is defined in the context of the pres-
ent discussion. The table summarizes 
each paradigm in terms of four as-
pects of knowledge we have discussed: 
how the data is acquired to serve as 
its knowledge base, the exemplar for 
representing knowledge and guid-
ing problem formulation, its scope in 
terms of its knowledge or capability, 
and the degree of curation of the input. 
The “+” prefix means “in addition to 
the previous case.”

General intelligence. Pre-trained 
models, which integrate a large corpus 
of general and specialized models not 
optimized for a single narrow task, are 
the foundation of the “general intelli-
gence” paradigm. The importance of 
language as the carrier of knowledge, 
which powers LLMs, has been critical 
to the emergence of the current gen-
eration of these models, which provide 
a level of intelligence that is configu-
rable to various applications.

In contrast, previous AI applica-
tions were tuned to a task. To predict 
pneumonia in a hospital, for example, 
the AI model was trained using cas-
es from that hospital alone, and its 
performance would not necessarily 
transfer to use on patients in a nearby 
hospital, let alone a different coun-
try. General intelligence is about the 
ability to integrate knowledge about 
pneumonia with other diseases, condi-
tions, geographies, and so on from all 
available information, and to apply the 
knowledge to unforeseen situations. 
More broadly, general intelligence re-
fers to an integrated set of essential 
mental skills that include verbal abil-
ity; reasoning; and spatial, numerical, 
mechanical, and common-sense and 
reasoning abilities, which underpin 
performance across all mental tasks.7 
A machine with general intelligence 

Table 1. The paradigm shifts in AI.

Data Exemplar Scope Curation

Expert  
Systems 

Human Rules Follows High

Machine 
Learning 

+ Databases Rules/networks + Discovers relationships Medium

Deep  
Learning 

+ Sensory Deep neural 
networks 

+ Senses relationships Low

General 
Intelligence 

+ Everything Pre-trained deep 
neural networks

 + Understands the world Minimal
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accounting, tax planning, and config-
uring computer systems.28

The prototypical exemplar for rep-
resenting knowledge in this paradigm 
is via symbolic relationships expressed 
in the form of “IF/THEN” rules,30 “se-
mantic networks,”35 or structured 
object representations.29 But it is dif-
ficult to express uncertainty in terms 
of these representations, let alone 
combine such uncertainties during 
inference, which prompted the devel-
opment of more principled graphical 
models for representing uncertainty in 
knowledge using probability theory.31

The exemplar in this paradigm was 
largely shaped by logic and the existing 
models of cognition from psychology, 
which viewed humans as having a long-
term and a short-term memory, and a 
mechanism for evoking them in a spe-
cific context. The knowledge declared 
by humans in expert systems, such as 
the rule “excess bilirubin high pallor,” 
constituted their long-term memory. 
An attention mechanism, also known 
as the inference engine or “control re-
gime,” evoked the rules depending on 
the context, and updated the system’s 
short-term memory accordingly. If a 
patient exhibited unusually high pal-
lor, for example, this symptom was 
noted in short-term memory and the 
appropriate rule was evoked from long-
term memory to hypothesize its cause, 
such as "excess bilirubin." In effect, the 
declaration of knowledge was separate 
from its application, which was con-
trolled by the attention mechanism.

Research in natural language pro-
cessing (NLP) was along similar lines, 
with researchers seeking to discover 
the rules of language. The expectation 
was that once these were fully speci-
fied, a machine would follow them in 
order to understand and generate lan-

sure of intelligence should consider 
how such capabilities are manifested 
across a wide range of tasks.

The Paradigm Shifts in AI
To understand the state of the art of AI 
and where it is heading, it is important 
to track its scientific history, especially 
the bottlenecks that stalled progress 
in each paradigm and the degree to 
which they were addressed by each 
paradigm shift.

The figure sketches out the his-
tory of AI from the expert systems 
era—which spanned the mid-1960s 
to the late 1980s—to the present. I do 
not cover the era of adversarial game-
playing algorithms and the emergence 
of graph-traversal search algorithms 
such as A*,16 which primarily fall into 
the realm of optimization and heuris-
tic search on well-specified problems. 
Indeed, game playing continues to be 
an active line of inquiry within AI, with 
the emergence of championship-level 
algorithms such as AlphaGo and its 
variants.42 I start with the era of knowl-
edge-based systems, which began to 
focus on the systematic representation 
and use of human knowledge at scale.

Expert systems. Expert systems are 
attractive in well-circumscribed do-
mains where human expertise is iden-
tifiable and definable. They perform 
well at specific tasks where this exper-
tise can be extracted through interac-
tions with humans, and it is typically 
represented in terms of relationships 
among situations and outcomes. AI 
was applied to diagnosis, planning, 
and design across a number of do-
mains, including healthcare, science, 
engineering, and business. The think-
ing was that if such systems performed 
at the level of human experts, they 
were intelligent.

An early successful demonstration 
of AI in medicine was the Internist 
system,33 which performed diagnosis 
in the field of internal medicine. In-
ternist represented expert knowledge 
using causal graphs and hierarchies 
relating diseases to symptoms. The 
rule-based expert system Mycin41 pro-
vided another early demonstration of 
diagnostic reasoning in the narrow 
domain of blood diseases. Expert sys-
tems were also successful in a number 
of other well-specified domains, such 
as engineering, mineral prospecting, 

guage.40 This turned out to be exceed-
ingly difficult to achieve.

The major hurdle of this paradigm 
of top-down knowledge specifica-
tion was the “knowledge engineering 
bottleneck.” It was challenging to ex-
tract reliable knowledge from experts, 
and equally difficult to represent and 
combine uncertainty in terms of rules. 
Collaborations between experts and 
knowledge engineers could take years 
or even decades, and the systems be-
came brittle at scale—rules that made 
sense in isolation often produced 
unexpected and undesirable results 
in the presence of many others. Fur-
thermore, researchers found that ex-
pert systems would often make errors 
in common-sense reasoning, which 
seemed intertwined with specialized 
knowledge. Evaluating such systems 
was also difficult, if one ever got to that 
stage. Human reasoning and language 
seemed much too complex and heter-
ogenous to be captured by top-down 
specification of relationships in this 
paradigm.

Machine learning. The center of 
gravity of AI began to tilt toward ma-
chine learning (ML) in the late 1980s 
and 1990s, with the maturation of da-
tabase technology, the emergence of 
the Internet, and the growing abun-
dance of observational and transac-
tional data.2 AI thinking shifted away 
from spoon-feeding highly specified 
human abstractions to the machine 
and toward automatically learning 
such relationships from data, guided 
by human intuition. While symbolic 
expert systems required humans to 
specify a model, ML enabled the ma-
chine to learn the model automati-
cally from curated examples. Model 
discovery was guided by a “loss func-
tion,” designed to directly or indi-
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Much of this type of knowledge be-
came available because of widespread 
communication on the Internet, where 
in the short span of a few decades, hu-
manity expressed thousands of years 
of its history in terms of language and 
images, along with social media and 
conversational data on a wide array of 
subjects. All humans became poten-
tial publishers and curators, providing 
the training data for AI to learn how to 
communicate fluently.

It is important to appreciate that in 
learning to communicate in natural 
language, AI has broken through two 
fundamental bottlenecks simultane-
ously. First, we are now able to com-
municate with machines on our terms 
rather than through cryptic computer 
languages and a restricted vocabu-
lary. This required solving a related 
problem: integrating and transferring 
knowledge about the world, including 
common sense, seamlessly into a con-
versation about any subject. Achiev-
ing this capability has required the 
machine to acquire the various types 
of knowledge simultaneously—exper-
tise, common sense, and tacit knowl-
edge—all of which are embedded in 
language. Secondly, now that the ma-
chine can understand us, we can com-
municate with it easily to create new 
things via language. This ability, where 
the machine can understand what we 
are saying well enough to maintain a 
conversation or create novel outputs 
for us according to language-based 
interactions, enables an entirely new 
kind of capability, enabling the ma-
chine to acquire high-quality training 
data seamlessly “from the wild” in par-
allel with its operation.

As in deep learning, the exemplar 
in the general intelligence paradigm is 
the DNN, whose properties we are now 
trying to understand, along with the 
general principles that underpin their 
performance. One such principle in 
the area of LLMs is that performance 
improves by increasing model com-
plexity, data size, and compute power 
across a wide range of tasks.20 These 
“scaling laws of AI” show that predic-
tive accuracy on the autocompletion 
task improves with increased compute 
power, model complexity, and data. If 
this measure of performance on auto-
completion is a good proxy for general 
intelligence, the scaling laws predict 

maintains such knowledge in a way 
that is easily transferrable across tasks 
and can be applied to novel situations.

Each paradigm shift moved AI clos-
er to general intelligence and greatly 
expanded the scope of applications of 
AI. Expert systems structured human 
knowledge to solve complex problems. 
Machine learning brought structured 
databases to life. Deep learning went 
further, enabling the machine to deal 
with structured and unstructured data 
about an application directly from the 
real world, as humans are able to do. 
Recent advances in DNNs have made it 
possible to create entirely new forms of 
output, previously assumed to be the 
purview of humans alone. This greatly 
expands the scope of AI into the cre-
ative arena in the arts, science, and 
business.

The recent shift to pre-trained mod-
els represents a fundamental depar-
ture from the previous paradigms, 
where knowledge was carefully ex-
tracted and represented. AI was an 
application, and tacit knowledge and 
common-sense reasoning were add-
ons that were separate from expertise. 
The CYC project26 was the first ma-
jor effort to explicitly teach the ma-
chine common sense. It did not work 
as the designers had hoped. There is 
too much tacit knowledge and com-
mon sense in human interaction that 
is evoked depending on context, and 
intelligence is much too complex and 
heterogenous to be compartmental-
ized and specified in the form of rules.

In contrast, pre-trained models, 
such as LLMs that learn through self-
supervision on uncurateda data, es-
chew boundaries, such as those in the 
pneumonia example. Rather, they inte-
grate specialized and general knowl-
edge, including data about peoples’ 
experiences across a range of subjects. 

sion towards general intelligence, as it 
is defined in the context of the pres-
ent discussion. The table summarizes 
each paradigm in terms of four as-
pects of knowledge we have discussed: 
how the data is acquired to serve as 
its knowledge base, the exemplar for 
representing knowledge and guid-
ing problem formulation, its scope in 
terms of its knowledge or capability, 
and the degree of curation of the input. 
The “+” prefix means “in addition to 
the previous case.”

General intelligence. Pre-trained 
models, which integrate a large corpus 
of general and specialized models not 
optimized for a single narrow task, are 
the foundation of the “general intelli-
gence” paradigm. The importance of 
language as the carrier of knowledge, 
which powers LLMs, has been critical 
to the emergence of the current gen-
eration of these models, which provide 
a level of intelligence that is configu-
rable to various applications.

In contrast, previous AI applica-
tions were tuned to a task. To predict 
pneumonia in a hospital, for example, 
the AI model was trained using cas-
es from that hospital alone, and its 
performance would not necessarily 
transfer to use on patients in a nearby 
hospital, let alone a different coun-
try. General intelligence is about the 
ability to integrate knowledge about 
pneumonia with other diseases, condi-
tions, geographies, and so on from all 
available information, and to apply the 
knowledge to unforeseen situations. 
More broadly, general intelligence re-
fers to an integrated set of essential 
mental skills that include verbal abil-
ity; reasoning; and spatial, numerical, 
mechanical, and common-sense and 
reasoning abilities, which underpin 
performance across all mental tasks.7 
A machine with general intelligence 

Table 1. The paradigm shifts in AI.

Data Exemplar Scope Curation

Expert  
Systems 

Human Rules Follows High

Machine 
Learning 

+ Databases Rules/networks + Discovers relationships Medium

Deep  
Learning 

+ Sensory Deep neural 
networks 

+ Senses relationships Low

General 
Intelligence 

+ Everything Pre-trained deep 
neural networks

 + Understands the world Minimal
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accounting, tax planning, and config-
uring computer systems.28

The prototypical exemplar for rep-
resenting knowledge in this paradigm 
is via symbolic relationships expressed 
in the form of “IF/THEN” rules,30 “se-
mantic networks,”35 or structured 
object representations.29 But it is dif-
ficult to express uncertainty in terms 
of these representations, let alone 
combine such uncertainties during 
inference, which prompted the devel-
opment of more principled graphical 
models for representing uncertainty in 
knowledge using probability theory.31

The exemplar in this paradigm was 
largely shaped by logic and the existing 
models of cognition from psychology, 
which viewed humans as having a long-
term and a short-term memory, and a 
mechanism for evoking them in a spe-
cific context. The knowledge declared 
by humans in expert systems, such as 
the rule “excess bilirubin high pallor,” 
constituted their long-term memory. 
An attention mechanism, also known 
as the inference engine or “control re-
gime,” evoked the rules depending on 
the context, and updated the system’s 
short-term memory accordingly. If a 
patient exhibited unusually high pal-
lor, for example, this symptom was 
noted in short-term memory and the 
appropriate rule was evoked from long-
term memory to hypothesize its cause, 
such as "excess bilirubin." In effect, the 
declaration of knowledge was separate 
from its application, which was con-
trolled by the attention mechanism.

Research in natural language pro-
cessing (NLP) was along similar lines, 
with researchers seeking to discover 
the rules of language. The expectation 
was that once these were fully speci-
fied, a machine would follow them in 
order to understand and generate lan-

sure of intelligence should consider 
how such capabilities are manifested 
across a wide range of tasks.

The Paradigm Shifts in AI
To understand the state of the art of AI 
and where it is heading, it is important 
to track its scientific history, especially 
the bottlenecks that stalled progress 
in each paradigm and the degree to 
which they were addressed by each 
paradigm shift.

The figure sketches out the his-
tory of AI from the expert systems 
era—which spanned the mid-1960s 
to the late 1980s—to the present. I do 
not cover the era of adversarial game-
playing algorithms and the emergence 
of graph-traversal search algorithms 
such as A*,16 which primarily fall into 
the realm of optimization and heuris-
tic search on well-specified problems. 
Indeed, game playing continues to be 
an active line of inquiry within AI, with 
the emergence of championship-level 
algorithms such as AlphaGo and its 
variants.42 I start with the era of knowl-
edge-based systems, which began to 
focus on the systematic representation 
and use of human knowledge at scale.

Expert systems. Expert systems are 
attractive in well-circumscribed do-
mains where human expertise is iden-
tifiable and definable. They perform 
well at specific tasks where this exper-
tise can be extracted through interac-
tions with humans, and it is typically 
represented in terms of relationships 
among situations and outcomes. AI 
was applied to diagnosis, planning, 
and design across a number of do-
mains, including healthcare, science, 
engineering, and business. The think-
ing was that if such systems performed 
at the level of human experts, they 
were intelligent.

An early successful demonstration 
of AI in medicine was the Internist 
system,33 which performed diagnosis 
in the field of internal medicine. In-
ternist represented expert knowledge 
using causal graphs and hierarchies 
relating diseases to symptoms. The 
rule-based expert system Mycin41 pro-
vided another early demonstration of 
diagnostic reasoning in the narrow 
domain of blood diseases. Expert sys-
tems were also successful in a number 
of other well-specified domains, such 
as engineering, mineral prospecting, 

guage.40 This turned out to be exceed-
ingly difficult to achieve.

The major hurdle of this paradigm 
of top-down knowledge specifica-
tion was the “knowledge engineering 
bottleneck.” It was challenging to ex-
tract reliable knowledge from experts, 
and equally difficult to represent and 
combine uncertainty in terms of rules. 
Collaborations between experts and 
knowledge engineers could take years 
or even decades, and the systems be-
came brittle at scale—rules that made 
sense in isolation often produced 
unexpected and undesirable results 
in the presence of many others. Fur-
thermore, researchers found that ex-
pert systems would often make errors 
in common-sense reasoning, which 
seemed intertwined with specialized 
knowledge. Evaluating such systems 
was also difficult, if one ever got to that 
stage. Human reasoning and language 
seemed much too complex and heter-
ogenous to be captured by top-down 
specification of relationships in this 
paradigm.

Machine learning. The center of 
gravity of AI began to tilt toward ma-
chine learning (ML) in the late 1980s 
and 1990s, with the maturation of da-
tabase technology, the emergence of 
the Internet, and the growing abun-
dance of observational and transac-
tional data.2 AI thinking shifted away 
from spoon-feeding highly specified 
human abstractions to the machine 
and toward automatically learning 
such relationships from data, guided 
by human intuition. While symbolic 
expert systems required humans to 
specify a model, ML enabled the ma-
chine to learn the model automati-
cally from curated examples. Model 
discovery was guided by a “loss func-
tion,” designed to directly or indi-
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Much of this type of knowledge be-
came available because of widespread 
communication on the Internet, where 
in the short span of a few decades, hu-
manity expressed thousands of years 
of its history in terms of language and 
images, along with social media and 
conversational data on a wide array of 
subjects. All humans became poten-
tial publishers and curators, providing 
the training data for AI to learn how to 
communicate fluently.

It is important to appreciate that in 
learning to communicate in natural 
language, AI has broken through two 
fundamental bottlenecks simultane-
ously. First, we are now able to com-
municate with machines on our terms 
rather than through cryptic computer 
languages and a restricted vocabu-
lary. This required solving a related 
problem: integrating and transferring 
knowledge about the world, including 
common sense, seamlessly into a con-
versation about any subject. Achiev-
ing this capability has required the 
machine to acquire the various types 
of knowledge simultaneously—exper-
tise, common sense, and tacit knowl-
edge—all of which are embedded in 
language. Secondly, now that the ma-
chine can understand us, we can com-
municate with it easily to create new 
things via language. This ability, where 
the machine can understand what we 
are saying well enough to maintain a 
conversation or create novel outputs 
for us according to language-based 
interactions, enables an entirely new 
kind of capability, enabling the ma-
chine to acquire high-quality training 
data seamlessly “from the wild” in par-
allel with its operation.

As in deep learning, the exemplar 
in the general intelligence paradigm is 
the DNN, whose properties we are now 
trying to understand, along with the 
general principles that underpin their 
performance. One such principle in 
the area of LLMs is that performance 
improves by increasing model com-
plexity, data size, and compute power 
across a wide range of tasks.20 These 
“scaling laws of AI” show that predic-
tive accuracy on the autocompletion 
task improves with increased compute 
power, model complexity, and data. If 
this measure of performance on auto-
completion is a good proxy for general 
intelligence, the scaling laws predict 

maintains such knowledge in a way 
that is easily transferrable across tasks 
and can be applied to novel situations.

Each paradigm shift moved AI clos-
er to general intelligence and greatly 
expanded the scope of applications of 
AI. Expert systems structured human 
knowledge to solve complex problems. 
Machine learning brought structured 
databases to life. Deep learning went 
further, enabling the machine to deal 
with structured and unstructured data 
about an application directly from the 
real world, as humans are able to do. 
Recent advances in DNNs have made it 
possible to create entirely new forms of 
output, previously assumed to be the 
purview of humans alone. This greatly 
expands the scope of AI into the cre-
ative arena in the arts, science, and 
business.

The recent shift to pre-trained mod-
els represents a fundamental depar-
ture from the previous paradigms, 
where knowledge was carefully ex-
tracted and represented. AI was an 
application, and tacit knowledge and 
common-sense reasoning were add-
ons that were separate from expertise. 
The CYC project26 was the first ma-
jor effort to explicitly teach the ma-
chine common sense. It did not work 
as the designers had hoped. There is 
too much tacit knowledge and com-
mon sense in human interaction that 
is evoked depending on context, and 
intelligence is much too complex and 
heterogenous to be compartmental-
ized and specified in the form of rules.

In contrast, pre-trained models, 
such as LLMs that learn through self-
supervision on uncurateda data, es-
chew boundaries, such as those in the 
pneumonia example. Rather, they inte-
grate specialized and general knowl-
edge, including data about peoples’ 
experiences across a range of subjects. 

sion towards general intelligence, as it 
is defined in the context of the pres-
ent discussion. The table summarizes 
each paradigm in terms of four as-
pects of knowledge we have discussed: 
how the data is acquired to serve as 
its knowledge base, the exemplar for 
representing knowledge and guid-
ing problem formulation, its scope in 
terms of its knowledge or capability, 
and the degree of curation of the input. 
The “+” prefix means “in addition to 
the previous case.”

General intelligence. Pre-trained 
models, which integrate a large corpus 
of general and specialized models not 
optimized for a single narrow task, are 
the foundation of the “general intelli-
gence” paradigm. The importance of 
language as the carrier of knowledge, 
which powers LLMs, has been critical 
to the emergence of the current gen-
eration of these models, which provide 
a level of intelligence that is configu-
rable to various applications.

In contrast, previous AI applica-
tions were tuned to a task. To predict 
pneumonia in a hospital, for example, 
the AI model was trained using cas-
es from that hospital alone, and its 
performance would not necessarily 
transfer to use on patients in a nearby 
hospital, let alone a different coun-
try. General intelligence is about the 
ability to integrate knowledge about 
pneumonia with other diseases, condi-
tions, geographies, and so on from all 
available information, and to apply the 
knowledge to unforeseen situations. 
More broadly, general intelligence re-
fers to an integrated set of essential 
mental skills that include verbal abil-
ity; reasoning; and spatial, numerical, 
mechanical, and common-sense and 
reasoning abilities, which underpin 
performance across all mental tasks.7 
A machine with general intelligence 

Table 1. The paradigm shifts in AI.

Data Exemplar Scope Curation

Expert  
Systems 

Human Rules Follows High

Machine 
Learning 

+ Databases Rules/networks + Discovers relationships Medium

Deep  
Learning 

+ Sensory Deep neural 
networks 

+ Senses relationships Low

General 
Intelligence 

+ Everything Pre-trained deep 
neural networks

 + Understands the world Minimal
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Period Data Scale (start to end) Slope Doubling time

1952 to 2010

Pre Deep Learning Era

No low outliers

(n = 19)
3e+04 to 2e+14 FLOPs

0.2 OOMs/year

[0.1; 0.2; 0.2]

21.3 months

[17.0; 21.2; 29.3]

2010 to 2022

Deep Learning Era

No outliers

(n = 80)
7e+14 to 2e+18 FLOPs

0.6 OOMs/year

[0.4; 0.7; 0.9]

5.7 months

[4.3; 5.6; 9.0]

September 2015 to 2022

Large-Scale Era

High outliers

(n = 19)
4e+21 to 8e+23 FLOPs

0.4 OOMs/year

[0.2; 0.4; 0.5]

9.9 months

[7.7; 10.1; 17.1]

TABLE I: Summary of our main results. In 2010 the trend accelerated along the with the popularity of Deep Learning, and in
late 2015 a new trend of large-scale models emerged.
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 118

Fig. 1: Trends in n = 118 milestone ML models between 1952 and 2022. We distinguish three eras. Notice the change of slope circa 2010,
matching the advent of Deep Learning; and the emergence of a new large-scale trend in late 2015.

transistor density doubles roughly every two years [22]
(this is often simplified to computational performance
doubling every two years)

2) Deep Learning Era: After around 2010, we observe
a slope discontinuity where the compute doubles every
4 to 9 months, significantly longer than the results
obtained in [4]

3) Large-Scale Era: We argue that a new trend of large-
scale models, with compute significantly higher than
other models published in the same year, emerges in
2015 with the release of AlphaGo [8]. This grows at
a slower rate than the Deep Learning trend, doubling
roughly every 8 to 17 months

The data arguably lies along three log-linear trends – one
corresponding to the Pre Deep Learning Era (1952 to 2010), a
second corresponding to regular (i.e. not large-scale) models
after the advent of Deep Learning (2010 to 2022), and a large-

scale trend from 2015 to 2022.

A. When did the Deep Learning Era start?

One potential source of error is the ambiguity in the transition
points - for instance, in our choice of the start of the Deep
Learning Era. In particular, our data (as shown in Figure 1)
does not allow for resolution of the transition to Deep Learning
at the level of a year.
Many authors decide to start the Deep Learning Era with the
release of AlexNet in 2012 [4, 23], but there is some room
for debate regarding this, and we instead believe that 2010 is
most inline with the available evidence:

• Many models preceding AlexNet have features associated
with Deep Learning, including model size and depth [24,
25, 26, 27, 28], GPU-based training [25, 29, 30, 31, 32],
and better performance than traditional ML approaches
[26, 27, 28, 31]
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accounting, tax planning, and config-
uring computer systems.28

The prototypical exemplar for rep-
resenting knowledge in this paradigm 
is via symbolic relationships expressed 
in the form of “IF/THEN” rules,30 “se-
mantic networks,”35 or structured 
object representations.29 But it is dif-
ficult to express uncertainty in terms 
of these representations, let alone 
combine such uncertainties during 
inference, which prompted the devel-
opment of more principled graphical 
models for representing uncertainty in 
knowledge using probability theory.31

The exemplar in this paradigm was 
largely shaped by logic and the existing 
models of cognition from psychology, 
which viewed humans as having a long-
term and a short-term memory, and a 
mechanism for evoking them in a spe-
cific context. The knowledge declared 
by humans in expert systems, such as 
the rule “excess bilirubin high pallor,” 
constituted their long-term memory. 
An attention mechanism, also known 
as the inference engine or “control re-
gime,” evoked the rules depending on 
the context, and updated the system’s 
short-term memory accordingly. If a 
patient exhibited unusually high pal-
lor, for example, this symptom was 
noted in short-term memory and the 
appropriate rule was evoked from long-
term memory to hypothesize its cause, 
such as "excess bilirubin." In effect, the 
declaration of knowledge was separate 
from its application, which was con-
trolled by the attention mechanism.

Research in natural language pro-
cessing (NLP) was along similar lines, 
with researchers seeking to discover 
the rules of language. The expectation 
was that once these were fully speci-
fied, a machine would follow them in 
order to understand and generate lan-

sure of intelligence should consider 
how such capabilities are manifested 
across a wide range of tasks.

The Paradigm Shifts in AI
To understand the state of the art of AI 
and where it is heading, it is important 
to track its scientific history, especially 
the bottlenecks that stalled progress 
in each paradigm and the degree to 
which they were addressed by each 
paradigm shift.

The figure sketches out the his-
tory of AI from the expert systems 
era—which spanned the mid-1960s 
to the late 1980s—to the present. I do 
not cover the era of adversarial game-
playing algorithms and the emergence 
of graph-traversal search algorithms 
such as A*,16 which primarily fall into 
the realm of optimization and heuris-
tic search on well-specified problems. 
Indeed, game playing continues to be 
an active line of inquiry within AI, with 
the emergence of championship-level 
algorithms such as AlphaGo and its 
variants.42 I start with the era of knowl-
edge-based systems, which began to 
focus on the systematic representation 
and use of human knowledge at scale.

Expert systems. Expert systems are 
attractive in well-circumscribed do-
mains where human expertise is iden-
tifiable and definable. They perform 
well at specific tasks where this exper-
tise can be extracted through interac-
tions with humans, and it is typically 
represented in terms of relationships 
among situations and outcomes. AI 
was applied to diagnosis, planning, 
and design across a number of do-
mains, including healthcare, science, 
engineering, and business. The think-
ing was that if such systems performed 
at the level of human experts, they 
were intelligent.

An early successful demonstration 
of AI in medicine was the Internist 
system,33 which performed diagnosis 
in the field of internal medicine. In-
ternist represented expert knowledge 
using causal graphs and hierarchies 
relating diseases to symptoms. The 
rule-based expert system Mycin41 pro-
vided another early demonstration of 
diagnostic reasoning in the narrow 
domain of blood diseases. Expert sys-
tems were also successful in a number 
of other well-specified domains, such 
as engineering, mineral prospecting, 

guage.40 This turned out to be exceed-
ingly difficult to achieve.

The major hurdle of this paradigm 
of top-down knowledge specifica-
tion was the “knowledge engineering 
bottleneck.” It was challenging to ex-
tract reliable knowledge from experts, 
and equally difficult to represent and 
combine uncertainty in terms of rules. 
Collaborations between experts and 
knowledge engineers could take years 
or even decades, and the systems be-
came brittle at scale—rules that made 
sense in isolation often produced 
unexpected and undesirable results 
in the presence of many others. Fur-
thermore, researchers found that ex-
pert systems would often make errors 
in common-sense reasoning, which 
seemed intertwined with specialized 
knowledge. Evaluating such systems 
was also difficult, if one ever got to that 
stage. Human reasoning and language 
seemed much too complex and heter-
ogenous to be captured by top-down 
specification of relationships in this 
paradigm.

Machine learning. The center of 
gravity of AI began to tilt toward ma-
chine learning (ML) in the late 1980s 
and 1990s, with the maturation of da-
tabase technology, the emergence of 
the Internet, and the growing abun-
dance of observational and transac-
tional data.2 AI thinking shifted away 
from spoon-feeding highly specified 
human abstractions to the machine 
and toward automatically learning 
such relationships from data, guided 
by human intuition. While symbolic 
expert systems required humans to 
specify a model, ML enabled the ma-
chine to learn the model automati-
cally from curated examples. Model 
discovery was guided by a “loss func-
tion,” designed to directly or indi-

Figure. The history of artificial intelligence.
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accounting, tax planning, and config-
uring computer systems.28

The prototypical exemplar for rep-
resenting knowledge in this paradigm 
is via symbolic relationships expressed 
in the form of “IF/THEN” rules,30 “se-
mantic networks,”35 or structured 
object representations.29 But it is dif-
ficult to express uncertainty in terms 
of these representations, let alone 
combine such uncertainties during 
inference, which prompted the devel-
opment of more principled graphical 
models for representing uncertainty in 
knowledge using probability theory.31

The exemplar in this paradigm was 
largely shaped by logic and the existing 
models of cognition from psychology, 
which viewed humans as having a long-
term and a short-term memory, and a 
mechanism for evoking them in a spe-
cific context. The knowledge declared 
by humans in expert systems, such as 
the rule “excess bilirubin high pallor,” 
constituted their long-term memory. 
An attention mechanism, also known 
as the inference engine or “control re-
gime,” evoked the rules depending on 
the context, and updated the system’s 
short-term memory accordingly. If a 
patient exhibited unusually high pal-
lor, for example, this symptom was 
noted in short-term memory and the 
appropriate rule was evoked from long-
term memory to hypothesize its cause, 
such as "excess bilirubin." In effect, the 
declaration of knowledge was separate 
from its application, which was con-
trolled by the attention mechanism.

Research in natural language pro-
cessing (NLP) was along similar lines, 
with researchers seeking to discover 
the rules of language. The expectation 
was that once these were fully speci-
fied, a machine would follow them in 
order to understand and generate lan-

sure of intelligence should consider 
how such capabilities are manifested 
across a wide range of tasks.

The Paradigm Shifts in AI
To understand the state of the art of AI 
and where it is heading, it is important 
to track its scientific history, especially 
the bottlenecks that stalled progress 
in each paradigm and the degree to 
which they were addressed by each 
paradigm shift.

The figure sketches out the his-
tory of AI from the expert systems 
era—which spanned the mid-1960s 
to the late 1980s—to the present. I do 
not cover the era of adversarial game-
playing algorithms and the emergence 
of graph-traversal search algorithms 
such as A*,16 which primarily fall into 
the realm of optimization and heuris-
tic search on well-specified problems. 
Indeed, game playing continues to be 
an active line of inquiry within AI, with 
the emergence of championship-level 
algorithms such as AlphaGo and its 
variants.42 I start with the era of knowl-
edge-based systems, which began to 
focus on the systematic representation 
and use of human knowledge at scale.

Expert systems. Expert systems are 
attractive in well-circumscribed do-
mains where human expertise is iden-
tifiable and definable. They perform 
well at specific tasks where this exper-
tise can be extracted through interac-
tions with humans, and it is typically 
represented in terms of relationships 
among situations and outcomes. AI 
was applied to diagnosis, planning, 
and design across a number of do-
mains, including healthcare, science, 
engineering, and business. The think-
ing was that if such systems performed 
at the level of human experts, they 
were intelligent.

An early successful demonstration 
of AI in medicine was the Internist 
system,33 which performed diagnosis 
in the field of internal medicine. In-
ternist represented expert knowledge 
using causal graphs and hierarchies 
relating diseases to symptoms. The 
rule-based expert system Mycin41 pro-
vided another early demonstration of 
diagnostic reasoning in the narrow 
domain of blood diseases. Expert sys-
tems were also successful in a number 
of other well-specified domains, such 
as engineering, mineral prospecting, 

guage.40 This turned out to be exceed-
ingly difficult to achieve.

The major hurdle of this paradigm 
of top-down knowledge specifica-
tion was the “knowledge engineering 
bottleneck.” It was challenging to ex-
tract reliable knowledge from experts, 
and equally difficult to represent and 
combine uncertainty in terms of rules. 
Collaborations between experts and 
knowledge engineers could take years 
or even decades, and the systems be-
came brittle at scale—rules that made 
sense in isolation often produced 
unexpected and undesirable results 
in the presence of many others. Fur-
thermore, researchers found that ex-
pert systems would often make errors 
in common-sense reasoning, which 
seemed intertwined with specialized 
knowledge. Evaluating such systems 
was also difficult, if one ever got to that 
stage. Human reasoning and language 
seemed much too complex and heter-
ogenous to be captured by top-down 
specification of relationships in this 
paradigm.

Machine learning. The center of 
gravity of AI began to tilt toward ma-
chine learning (ML) in the late 1980s 
and 1990s, with the maturation of da-
tabase technology, the emergence of 
the Internet, and the growing abun-
dance of observational and transac-
tional data.2 AI thinking shifted away 
from spoon-feeding highly specified 
human abstractions to the machine 
and toward automatically learning 
such relationships from data, guided 
by human intuition. While symbolic 
expert systems required humans to 
specify a model, ML enabled the ma-
chine to learn the model automati-
cally from curated examples. Model 
discovery was guided by a “loss func-
tion,” designed to directly or indi-

Figure. The history of artificial intelligence.
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The winter, the summer and the summer dream of artificial…

attempts to manage sub-symbolic information, as in the case of the first connection-
ist models, clashed with the limits of such computational structures, as for example 
in the Rosenblatt’s perceptron (Rosenblatt 1958) with the famous XOR problem pit-
falls (Minsky and Papert 1969). For these reasons, more specific terminologies were 
preferred to the term Artificial Intelligence: they were aimed to indicate particular 
sectors of deductive and interpretative automation processes, inspired by some func-
tions of human intelligence (Sartor 2016). We rather spoke of Information Retrieval, 
Pattern Recognition, Expert Systems, Probabilistic Reasoning, etc., terms which are 
probably less evocative but they had the purpose of creating more limited expecta-
tions for certain application fields.

3  The end of AI and Law winter

Nowadays, Artificial Intelligence is surrounded by a lot of hype, and this holds for 
the AI and Law domain too, testified to also by the relevant number of participants 
to ICAIL 2021, organized on-line because of the Covid-19 pandemic. It was a hard 
decision to go for the virtual version of the conference, but our Brazilian colleagues 
of the University of Saõ Paulo have taken the risk, refocusing on the opportunity of 
the on-line version. Finally, the challenge was won, as demonstrated by the partici-
pation figures: about 500 participants in the pre-event, 1380 in the main conference, 
11 workshops, 89 paper submissions.

This success comes from afar and it is the result of a long journey, during which, 
according to Thorne McCarty5, the research on AI and Law made a lot of pro-
gress along two distinct direction lines and motivations: theoretical and practical 

Fig. 1  The AI evolution over time

5 first IAAIL president.

Francesconi (2022) The winter, the summer and the summer dream of artificial intelligence in law

https://doi.org/10.1007/s10506-022-09309-8
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Capabilities of AI systems

32 Peter & Riemer (2024) Wondering what AI actually is? Here are the 7 things it can do for you 
(an online article on The Conversation website)

reading hom
ework

https://doi.org/10.64628/AA.x7wx7cew7


Exercise: How search works
⏳ 10 minutes 

1. Take a piece of paper and draw how Google Search works — according to your 

understanding 

2. Turn to your neighbor and explain to each other what you drew

33 Based on Dan M. Russell & Peter Norvig course



Different models of how a system works

Designer’s conceptual model — conception of the look, feel, 
and operation of a product. The system image is what can 
be derived from the structure and operation.  

User’s mental model developed by interaction with the 
product and by extrapolation from previous, similar systems 

Designers expect the user’s model to be identical to their 
own, but because they cannot communicate directly with 
the user, the burden of communication is through the 
design

Mental models are usually incomplete.   
They may be inaccurate. 
They are updated as little as possible. 

34 Diagram: Norman (2013) The Design of Everyday Things: Revised and Expanded Edition (p. 32)

32 The Design of Everyday Things

Figure 1.11 indicates why communication is such an important 
aspect of good design. No matter how brilliant the product, if peo-
ple cannot use it, it will receive poor reviews. It is up to the de-
signer to provide the appropriate information to make the product 
understandable and usable. Most important is the provision of a 
good conceptual model that guides the user when thing go wrong. 
With a good conceptual model, people can figure out what has 
happened and correct the things that went wrong. Without a good 
model, they struggle, often making matters worse.

Good conceptual models are the key to understandable, enjoy-
able products: good communication is the key to good conceptual 
models.

The Paradox of Technology
Technology offers the potential to make life easier and more en-
joyable; each new technology provides increased benefits. At the 
same time, added complexities increase our difficulty and frustra-
tion with technology. The design problem posed by technological 
advances is enormous. Consider the wristwatch. A few decades 
ago, watches were simple. All you had to do was set the time and 
keep the watch wound. The standard control was the stem: a knob 
at the side of the watch. Turning the knob would wind the spring 
that provided power to the watch movement. Pulling out the knob 
and turning it rotated the hands. The operations were easy to learn 
and easy to do. There was a reasonable relationship between the 

FIGURE 1.11. The Designer’s Model, 
the User’s Model, and the System Im-
age. The designer’s conceptual model is 
the designer’s conception of the look, feel, 
and operation of a product. The system 
image is what can be derived from the 
physical structure that has been built 
(including documentation). The user’s 
mental model is developed through in-
teraction with the product and the system 
image. Designers expect the user’s model 
to be identical to their own, but because 
they cannot communicate directly with 
the user, the burden of communication is 
with the system image.
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32 The Design of Everyday Things

Figure 1.11 indicates why communication is such an important 
aspect of good design. No matter how brilliant the product, if peo-
ple cannot use it, it will receive poor reviews. It is up to the de-
signer to provide the appropriate information to make the product 
understandable and usable. Most important is the provision of a 
good conceptual model that guides the user when thing go wrong. 
With a good conceptual model, people can figure out what has 
happened and correct the things that went wrong. Without a good 
model, they struggle, often making matters worse.

Good conceptual models are the key to understandable, enjoy-
able products: good communication is the key to good conceptual 
models.

The Paradox of Technology
Technology offers the potential to make life easier and more en-
joyable; each new technology provides increased benefits. At the 
same time, added complexities increase our difficulty and frustra-
tion with technology. The design problem posed by technological 
advances is enormous. Consider the wristwatch. A few decades 
ago, watches were simple. All you had to do was set the time and 
keep the watch wound. The standard control was the stem: a knob 
at the side of the watch. Turning the knob would wind the spring 
that provided power to the watch movement. Pulling out the knob 
and turning it rotated the hands. The operations were easy to learn 
and easy to do. There was a reasonable relationship between the 

FIGURE 1.11. The Designer’s Model, 
the User’s Model, and the System Im-
age. The designer’s conceptual model is 
the designer’s conception of the look, feel, 
and operation of a product. The system 
image is what can be derived from the 
physical structure that has been built 
(including documentation). The user’s 
mental model is developed through in-
teraction with the product and the system 
image. Designers expect the user’s model 
to be identical to their own, but because 
they cannot communicate directly with 
the user, the burden of communication is 
with the system image.
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• Some psychology of learning that are used in 
designing (non-AI) interactive systems 

• Description of users’ mental model and designer’s 
conceptual model 

• Questions to consider when analyzing users’ tasks

reading hom
ework



Homework
• Chapter 11 from Johnson (2020) Designing with the Mind in Mind (3 ed.) 

• Focus on the following sections on pp. 179 – 199 

• We learn faster when operation is task focused, simple, consistent, and predictable 

• When risk is low, we explore more and learn more 

• Dhar (2024) The Paradigm Shifts in AI 

• Peter & Riemer (2024) Wondering what AI actually is? Here are the 7 things it can do for you  

• Read the course syllabus and note down any questions you may have

36
❗Next lecture will be on Thursday, September 25 (no lecture on Wednesday)

📗 Read before the lecture next week

https://doi.org/10.64628/AA.x7wx7cew7


Dhar (2024) The Paradigm Shifts in AI
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accounting, tax planning, and config-
uring computer systems.28

The prototypical exemplar for rep-
resenting knowledge in this paradigm 
is via symbolic relationships expressed 
in the form of “IF/THEN” rules,30 “se-
mantic networks,”35 or structured 
object representations.29 But it is dif-
ficult to express uncertainty in terms 
of these representations, let alone 
combine such uncertainties during 
inference, which prompted the devel-
opment of more principled graphical 
models for representing uncertainty in 
knowledge using probability theory.31

The exemplar in this paradigm was 
largely shaped by logic and the existing 
models of cognition from psychology, 
which viewed humans as having a long-
term and a short-term memory, and a 
mechanism for evoking them in a spe-
cific context. The knowledge declared 
by humans in expert systems, such as 
the rule “excess bilirubin high pallor,” 
constituted their long-term memory. 
An attention mechanism, also known 
as the inference engine or “control re-
gime,” evoked the rules depending on 
the context, and updated the system’s 
short-term memory accordingly. If a 
patient exhibited unusually high pal-
lor, for example, this symptom was 
noted in short-term memory and the 
appropriate rule was evoked from long-
term memory to hypothesize its cause, 
such as "excess bilirubin." In effect, the 
declaration of knowledge was separate 
from its application, which was con-
trolled by the attention mechanism.

Research in natural language pro-
cessing (NLP) was along similar lines, 
with researchers seeking to discover 
the rules of language. The expectation 
was that once these were fully speci-
fied, a machine would follow them in 
order to understand and generate lan-

sure of intelligence should consider 
how such capabilities are manifested 
across a wide range of tasks.

The Paradigm Shifts in AI
To understand the state of the art of AI 
and where it is heading, it is important 
to track its scientific history, especially 
the bottlenecks that stalled progress 
in each paradigm and the degree to 
which they were addressed by each 
paradigm shift.

The figure sketches out the his-
tory of AI from the expert systems 
era—which spanned the mid-1960s 
to the late 1980s—to the present. I do 
not cover the era of adversarial game-
playing algorithms and the emergence 
of graph-traversal search algorithms 
such as A*,16 which primarily fall into 
the realm of optimization and heuris-
tic search on well-specified problems. 
Indeed, game playing continues to be 
an active line of inquiry within AI, with 
the emergence of championship-level 
algorithms such as AlphaGo and its 
variants.42 I start with the era of knowl-
edge-based systems, which began to 
focus on the systematic representation 
and use of human knowledge at scale.

Expert systems. Expert systems are 
attractive in well-circumscribed do-
mains where human expertise is iden-
tifiable and definable. They perform 
well at specific tasks where this exper-
tise can be extracted through interac-
tions with humans, and it is typically 
represented in terms of relationships 
among situations and outcomes. AI 
was applied to diagnosis, planning, 
and design across a number of do-
mains, including healthcare, science, 
engineering, and business. The think-
ing was that if such systems performed 
at the level of human experts, they 
were intelligent.

An early successful demonstration 
of AI in medicine was the Internist 
system,33 which performed diagnosis 
in the field of internal medicine. In-
ternist represented expert knowledge 
using causal graphs and hierarchies 
relating diseases to symptoms. The 
rule-based expert system Mycin41 pro-
vided another early demonstration of 
diagnostic reasoning in the narrow 
domain of blood diseases. Expert sys-
tems were also successful in a number 
of other well-specified domains, such 
as engineering, mineral prospecting, 

guage.40 This turned out to be exceed-
ingly difficult to achieve.

The major hurdle of this paradigm 
of top-down knowledge specifica-
tion was the “knowledge engineering 
bottleneck.” It was challenging to ex-
tract reliable knowledge from experts, 
and equally difficult to represent and 
combine uncertainty in terms of rules. 
Collaborations between experts and 
knowledge engineers could take years 
or even decades, and the systems be-
came brittle at scale—rules that made 
sense in isolation often produced 
unexpected and undesirable results 
in the presence of many others. Fur-
thermore, researchers found that ex-
pert systems would often make errors 
in common-sense reasoning, which 
seemed intertwined with specialized 
knowledge. Evaluating such systems 
was also difficult, if one ever got to that 
stage. Human reasoning and language 
seemed much too complex and heter-
ogenous to be captured by top-down 
specification of relationships in this 
paradigm.

Machine learning. The center of 
gravity of AI began to tilt toward ma-
chine learning (ML) in the late 1980s 
and 1990s, with the maturation of da-
tabase technology, the emergence of 
the Internet, and the growing abun-
dance of observational and transac-
tional data.2 AI thinking shifted away 
from spoon-feeding highly specified 
human abstractions to the machine 
and toward automatically learning 
such relationships from data, guided 
by human intuition. While symbolic 
expert systems required humans to 
specify a model, ML enabled the ma-
chine to learn the model automati-
cally from curated examples. Model 
discovery was guided by a “loss func-
tion,” designed to directly or indi-

Figure. The history of artificial intelligence.
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Much of this type of knowledge be-
came available because of widespread 
communication on the Internet, where 
in the short span of a few decades, hu-
manity expressed thousands of years 
of its history in terms of language and 
images, along with social media and 
conversational data on a wide array of 
subjects. All humans became poten-
tial publishers and curators, providing 
the training data for AI to learn how to 
communicate fluently.

It is important to appreciate that in 
learning to communicate in natural 
language, AI has broken through two 
fundamental bottlenecks simultane-
ously. First, we are now able to com-
municate with machines on our terms 
rather than through cryptic computer 
languages and a restricted vocabu-
lary. This required solving a related 
problem: integrating and transferring 
knowledge about the world, including 
common sense, seamlessly into a con-
versation about any subject. Achiev-
ing this capability has required the 
machine to acquire the various types 
of knowledge simultaneously—exper-
tise, common sense, and tacit knowl-
edge—all of which are embedded in 
language. Secondly, now that the ma-
chine can understand us, we can com-
municate with it easily to create new 
things via language. This ability, where 
the machine can understand what we 
are saying well enough to maintain a 
conversation or create novel outputs 
for us according to language-based 
interactions, enables an entirely new 
kind of capability, enabling the ma-
chine to acquire high-quality training 
data seamlessly “from the wild” in par-
allel with its operation.

As in deep learning, the exemplar 
in the general intelligence paradigm is 
the DNN, whose properties we are now 
trying to understand, along with the 
general principles that underpin their 
performance. One such principle in 
the area of LLMs is that performance 
improves by increasing model com-
plexity, data size, and compute power 
across a wide range of tasks.20 These 
“scaling laws of AI” show that predic-
tive accuracy on the autocompletion 
task improves with increased compute 
power, model complexity, and data. If 
this measure of performance on auto-
completion is a good proxy for general 
intelligence, the scaling laws predict 

maintains such knowledge in a way 
that is easily transferrable across tasks 
and can be applied to novel situations.

Each paradigm shift moved AI clos-
er to general intelligence and greatly 
expanded the scope of applications of 
AI. Expert systems structured human 
knowledge to solve complex problems. 
Machine learning brought structured 
databases to life. Deep learning went 
further, enabling the machine to deal 
with structured and unstructured data 
about an application directly from the 
real world, as humans are able to do. 
Recent advances in DNNs have made it 
possible to create entirely new forms of 
output, previously assumed to be the 
purview of humans alone. This greatly 
expands the scope of AI into the cre-
ative arena in the arts, science, and 
business.

The recent shift to pre-trained mod-
els represents a fundamental depar-
ture from the previous paradigms, 
where knowledge was carefully ex-
tracted and represented. AI was an 
application, and tacit knowledge and 
common-sense reasoning were add-
ons that were separate from expertise. 
The CYC project26 was the first ma-
jor effort to explicitly teach the ma-
chine common sense. It did not work 
as the designers had hoped. There is 
too much tacit knowledge and com-
mon sense in human interaction that 
is evoked depending on context, and 
intelligence is much too complex and 
heterogenous to be compartmental-
ized and specified in the form of rules.

In contrast, pre-trained models, 
such as LLMs that learn through self-
supervision on uncurateda data, es-
chew boundaries, such as those in the 
pneumonia example. Rather, they inte-
grate specialized and general knowl-
edge, including data about peoples’ 
experiences across a range of subjects. 

sion towards general intelligence, as it 
is defined in the context of the pres-
ent discussion. The table summarizes 
each paradigm in terms of four as-
pects of knowledge we have discussed: 
how the data is acquired to serve as 
its knowledge base, the exemplar for 
representing knowledge and guid-
ing problem formulation, its scope in 
terms of its knowledge or capability, 
and the degree of curation of the input. 
The “+” prefix means “in addition to 
the previous case.”

General intelligence. Pre-trained 
models, which integrate a large corpus 
of general and specialized models not 
optimized for a single narrow task, are 
the foundation of the “general intelli-
gence” paradigm. The importance of 
language as the carrier of knowledge, 
which powers LLMs, has been critical 
to the emergence of the current gen-
eration of these models, which provide 
a level of intelligence that is configu-
rable to various applications.

In contrast, previous AI applica-
tions were tuned to a task. To predict 
pneumonia in a hospital, for example, 
the AI model was trained using cas-
es from that hospital alone, and its 
performance would not necessarily 
transfer to use on patients in a nearby 
hospital, let alone a different coun-
try. General intelligence is about the 
ability to integrate knowledge about 
pneumonia with other diseases, condi-
tions, geographies, and so on from all 
available information, and to apply the 
knowledge to unforeseen situations. 
More broadly, general intelligence re-
fers to an integrated set of essential 
mental skills that include verbal abil-
ity; reasoning; and spatial, numerical, 
mechanical, and common-sense and 
reasoning abilities, which underpin 
performance across all mental tasks.7 
A machine with general intelligence 

Table 1. The paradigm shifts in AI.

Data Exemplar Scope Curation

Expert  
Systems 

Human Rules Follows High

Machine 
Learning 

+ Databases Rules/networks + Discovers relationships Medium

Deep  
Learning 

+ Sensory Deep neural 
networks 

+ Senses relationships Low

General 
Intelligence 

+ Everything Pre-trained deep 
neural networks

 + Understands the world Minimal
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You know we’ve reached peak interest in arti!cial intelligence

(AI) when Oprah Winfrey hosts a television special about it. AI is

truly everywhere. And we will all have a relationship with it –

whether using it, building it, governing it or even befriending it.

But what exactly is AI? While most people won’t need to know

exactly how it works under the hood, we will all need to

understand what it can do. In our conversations with global 

leaders across business, government and the arts, one thing stood

out – you can’t fake it anymore. AI "uency that is.

AI isn’t just about chatbots. To help understand what it is about,

we’ve developed a framework which explains the broad broad

range of capabilities it o#ers. We call this the “capabilities stack”.

We see AI systems as having seven basic kinds of capability, each

building on the ones below it in the stack. From least complex to

most, these are: recognition, classi!cation, prediction,

recommendation, automation, generation and interaction.

Recognition

At its core, the kind of AI we are seeing in consumer products

today identi!es patterns. Unlike traditional coding, where

developers explicitly program how a system works, AI “learns”

these patterns from vast datasets, enabling it to perform tasks.

This “learning” is essentially just advanced mathematics that

turns patterns into complex probabilistic models – encoded in

so-called arti!cial neural networks.

Once learned, patterns can be recognised – such as your face,

when you open your phone, or when you clear customs at the 

airport.

Europeans, get our weekly newsletter with analysis from
European scholars

Get our newsletter

Pattern recognition is all around us – whether it’s license plate 

recognition when you park your car at the mall, or when the

police scan your registration. It’s used in manufacturing for

quality control to detect defective parts, in health care to identify 

cancer in MRI scans, or to identify potholes by using buses

equipped with cameras that monitor the roads in Sydney.

Classi!cation

Once an AI system can recognise patterns, we can train it to

detect subtle variations and categorise them. This is how your

photo app neatly organises albums by family members, or how

apps identify and label di#erent kinds of skin lesions. AI

classi!cation is also at work behind the scenes when phone

companies and banks identify spam and fraud calls.

In New Zealand, non-pro!t organisation Te Hiku developed an 

AI language model to classify thousands of hours of recordings

to help revitalise Te Reo Māori, the local indigenous language.

Prediction

When AI is trained on past data, it can be used to predict future

outcomes. For example, airlines use AI to predict the estimated 

arrival times of incoming "ights and to assign gates on time so

you don’t end up waiting on the tarmac.

Similarly, Google Flights uses AI to predict "ight delays even

before airlines announce them.

In Hong Kong, an AI prediction model saves taxpayer money by

predicting when a project needs early intervention to prevent it

overrunning its budget and completion date. And when you buy

stu# on Amazon, the ecommerce giant uses AI to predict 

demand and optimise delivery routes, so you get your packages

within hours, not just days.

Recommendation

Once we predict, we can make recommendations for what to do

next.

If you went to Taylor Swi$’s Eras tour concert at Sydney’s Accor

stadium, you were kept safe thanks to AI recommendations. A 

system funded by the New South Wales government used data

from multiple sources to analyse the movement and mood of

the 80,000 strong crowd, providing real-time recommendations

to ensure everyone’s safety.

AI-based recommendations are everywhere. Social media,

streaming platforms, delivery services and shopping apps all use

past behaviour patterns to present you with their “for you” pages.

Even pig farms use pig facial recognition and tracking to alert

farmers to any issues and recommend particular interventions.

Automation

It’s a small step from prediction and recommendation to full

automation.

In Germany, large wind turbines use AI to keep the lesser spotted

eagle safe. An AI algorithm detects approaching birds and

automatically slows down the turbines allowing them to pass

unharmed.

Closer to home, Melbourne Water uses AI to autonomously

regulate its pump control system to reduce energy costs by

around 20% per year. In Western Sydney, local buses on key 

routes are AI-enabled: if a bus is running late, the system predicts

its arrival at the next intersection and automatically green-lights

its journey.

Generation

Once we can encode complex patterns into neural networks, we

can also use these patterns to generate new, similar ones. This

works with all kinds of data – images, text, audio and video.

Image generation is now built into many new phones. Don’t like

the look on someone’s face? Change into a smile. Want a boat on

that lake? Just add it in. And it doesn’t stop there.

Tools such as Runway let you manipulate videos or create new 

ones with just a text prompt. ElevenLabs allows you to generate

synthetic voices or digitise existing ones from short recordings.

These can be used to narrate audiobooks, but also carry risks

such as deepfake impersonation.

And we haven’t even mentioned large language models such as

ChatGPT, which are transforming how we work with text and

how we develop computer code. Research by McKinsey found

that these models can cut the time required for complex coding

tasks by up to 50%.

Interaction

Finally, generative AI also makes it possible to mimic human-like

interactions.

Soon, virtual assistants, companions and digital humans will be

everywhere. They will attend your Zoom meeting to take notes

and schedule follow-up meetings.

Interactive AI assistants, such as IBM’s AskHR bot, will answer

your HR questions. And when you get home, your AI friend app

will entertain you, while digital humans on social media are

ready to sell you anything, any time. And with voice mode 

activated, even ChatGPT gets in on the inter-action.

Amid the excitement around generative AI, it is important to

remember that AI is more than chatbots. It impacts many things

beyond the "ashy conversational tools – o$en in ways that

quietly improve everyday processes.
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You know we’ve reached peak interest in arti!cial intelligence

(AI) when Oprah Winfrey hosts a television special about it. AI is

truly everywhere. And we will all have a relationship with it –

whether using it, building it, governing it or even befriending it.

But what exactly is AI? While most people won’t need to know

exactly how it works under the hood, we will all need to

understand what it can do. In our conversations with global 

leaders across business, government and the arts, one thing stood

out – you can’t fake it anymore. AI "uency that is.

AI isn’t just about chatbots. To help understand what it is about,

we’ve developed a framework which explains the broad broad

range of capabilities it o#ers. We call this the “capabilities stack”.

We see AI systems as having seven basic kinds of capability, each

building on the ones below it in the stack. From least complex to

most, these are: recognition, classi!cation, prediction,

recommendation, automation, generation and interaction.

Recognition

At its core, the kind of AI we are seeing in consumer products

today identi!es patterns. Unlike traditional coding, where

developers explicitly program how a system works, AI “learns”

these patterns from vast datasets, enabling it to perform tasks.

This “learning” is essentially just advanced mathematics that

turns patterns into complex probabilistic models – encoded in

so-called arti!cial neural networks.

Once learned, patterns can be recognised – such as your face,

when you open your phone, or when you clear customs at the 

airport.

Europeans, get our weekly newsletter with analysis from
European scholars

Get our newsletter

Pattern recognition is all around us – whether it’s license plate 

recognition when you park your car at the mall, or when the

police scan your registration. It’s used in manufacturing for

quality control to detect defective parts, in health care to identify 

cancer in MRI scans, or to identify potholes by using buses

equipped with cameras that monitor the roads in Sydney.

Classi!cation

Once an AI system can recognise patterns, we can train it to

detect subtle variations and categorise them. This is how your

photo app neatly organises albums by family members, or how

apps identify and label di#erent kinds of skin lesions. AI

classi!cation is also at work behind the scenes when phone

companies and banks identify spam and fraud calls.

In New Zealand, non-pro!t organisation Te Hiku developed an 

AI language model to classify thousands of hours of recordings

to help revitalise Te Reo Māori, the local indigenous language.

Prediction

When AI is trained on past data, it can be used to predict future

outcomes. For example, airlines use AI to predict the estimated 

arrival times of incoming "ights and to assign gates on time so

you don’t end up waiting on the tarmac.

Similarly, Google Flights uses AI to predict "ight delays even

before airlines announce them.

In Hong Kong, an AI prediction model saves taxpayer money by

predicting when a project needs early intervention to prevent it

overrunning its budget and completion date. And when you buy

stu# on Amazon, the ecommerce giant uses AI to predict 

demand and optimise delivery routes, so you get your packages

within hours, not just days.

Recommendation

Once we predict, we can make recommendations for what to do

next.

If you went to Taylor Swi$’s Eras tour concert at Sydney’s Accor

stadium, you were kept safe thanks to AI recommendations. A 

system funded by the New South Wales government used data

from multiple sources to analyse the movement and mood of

the 80,000 strong crowd, providing real-time recommendations

to ensure everyone’s safety.

AI-based recommendations are everywhere. Social media,

streaming platforms, delivery services and shopping apps all use

past behaviour patterns to present you with their “for you” pages.

Even pig farms use pig facial recognition and tracking to alert

farmers to any issues and recommend particular interventions.

Automation

It’s a small step from prediction and recommendation to full

automation.

In Germany, large wind turbines use AI to keep the lesser spotted

eagle safe. An AI algorithm detects approaching birds and

automatically slows down the turbines allowing them to pass

unharmed.

Closer to home, Melbourne Water uses AI to autonomously

regulate its pump control system to reduce energy costs by

around 20% per year. In Western Sydney, local buses on key 

routes are AI-enabled: if a bus is running late, the system predicts

its arrival at the next intersection and automatically green-lights

its journey.

Generation

Once we can encode complex patterns into neural networks, we

can also use these patterns to generate new, similar ones. This

works with all kinds of data – images, text, audio and video.

Image generation is now built into many new phones. Don’t like

the look on someone’s face? Change into a smile. Want a boat on

that lake? Just add it in. And it doesn’t stop there.

Tools such as Runway let you manipulate videos or create new 

ones with just a text prompt. ElevenLabs allows you to generate

synthetic voices or digitise existing ones from short recordings.

These can be used to narrate audiobooks, but also carry risks

such as deepfake impersonation.

And we haven’t even mentioned large language models such as

ChatGPT, which are transforming how we work with text and

how we develop computer code. Research by McKinsey found

that these models can cut the time required for complex coding

tasks by up to 50%.

Interaction

Finally, generative AI also makes it possible to mimic human-like

interactions.

Soon, virtual assistants, companions and digital humans will be

everywhere. They will attend your Zoom meeting to take notes

and schedule follow-up meetings.

Interactive AI assistants, such as IBM’s AskHR bot, will answer

your HR questions. And when you get home, your AI friend app

will entertain you, while digital humans on social media are

ready to sell you anything, any time. And with voice mode 

activated, even ChatGPT gets in on the inter-action.

Amid the excitement around generative AI, it is important to

remember that AI is more than chatbots. It impacts many things

beyond the "ashy conversational tools – o$en in ways that

quietly improve everyday processes.

Artificial intelligence (AI) Social media Facial recognition Large language models ChatGPT

Taylor Swift's Eras Tour AI deepfakes

Hear from more scholars in Europe

There are millions of people who are working to !nd

solutions to our biggest problems.  

 

In our weekly email, which I help curate, you will get a

balanced news diet that doesn’t leave you exhausted… but

energised and hopeful about European matters.

Get our newsletter

Laura Hood
Politics Editor & Assistant Editor, The Conversation UK

Authors

Sandra Peter
Director of Sydney Executive
Plus, University of Sydney

Kai Riemer
Professor of Information
Technology and Organisation,
University of Sydney

Disclosure statement

The authors do not work for, consult, own
shares in or receive funding from any
company or organisation that would benefit
from this article, and have disclosed no
relevant affiliations beyond their academic
appointment.

Partners

University of Sydney provides funding as a
member of The Conversation AU.

View all partners

DOI

https://doi.org/10.64628/AA.x7wx7cew7

We believe in the
free ;ow of
information

Republish our articles for
free, online or in print,
under Creative Commons
licence.

Republish this article

The AI capabilities stack is a framework for understanding how AI is used. Sandra Peter & Kai Remer,
CC BY-NC-ND

INTERACTION
Alfacilitatesuser
interactionsaschatbots
orlife-likeavatars.

7.INTE
RACTIO

N

GENERATION
Alcreatesoriginalcontentthat
mimicscharacteristicsofits
trainingdata,suchastext,
images,video,orsound

6.GENE
RATION

T
H
E
A
IC
A
P
A
B
IL
IT
IE
S
S
TA
C
K 5 AUTOMATION

Aloperateswithgreater
autonomybuildingon
predictivecapabilities.

5.AUT
OMATI

ON

4.RECO
MMEND

ATION
RECOMMENDATION
Alrecommendsthemostsuitable
optionfromasetofalternatives
basedonpastbehaviour.

3 PREDICTION
Alpredictsfutureoutcomes
basedonhistoricalpatterns.

3.PRED
ICTION

CLASSIFICATION
Alclassifiespatternsinto
distinctcategories.

2.CLA
SSIFICA

TION

RECOGNITION
Alrecognizespatternsin
data,suchasimages,
text,orsound.

1.REC
OGNIT

ION
CCBY-NC-ND.SandraPeter,KaiRiemer,2024

AI was used for crowd safety purposes at Taylor Swift’s recent concerts in Sydney. Dean Lewins/AAP



You might also like

I got generative AI to
attempt an
undergraduate law
exam. It struggled with
complex questions

Happy, sad or angry? AI
can detect emotions in
text according to
new research

Animals in the machine:
why the law needs to
protect animals from AI

AI probably isn’t the big
smartphone selling
point that Apple and
other tech giants think
it is

Events Jobs

More events Associate Professor, Information Interaction

Lecturer (Mathematics or Statistics)

Editorial Assistant

Manager, Research Grants (ARC Portfolio)

Head of School, Nursing

More jobs

Editorial Policies

Community standards

Republishing guidelines

Analytics

Our feeds

Get newsletter

Who we are

Our charter

Partners and funders

Resource for media

Contact us

Consent preferences

Privacy policy Terms and conditions Corrections Copyright © 2010–2025, The Conversation Media Group Ltd

Wondering what AI actually is?
Here are the 7 things it can do
for you

Newsletters Become an author Sign up as a reader Sign inEdition: Europe

Academic rigour, journalistic flair
Search analysis, research, academics…

Dacachi/Shutterstock

Published: October 2, 2024 1.53am CEST

You know we’ve reached peak interest in arti!cial intelligence

(AI) when Oprah Winfrey hosts a television special about it. AI is

truly everywhere. And we will all have a relationship with it –

whether using it, building it, governing it or even befriending it.

But what exactly is AI? While most people won’t need to know

exactly how it works under the hood, we will all need to

understand what it can do. In our conversations with global 

leaders across business, government and the arts, one thing stood

out – you can’t fake it anymore. AI "uency that is.

AI isn’t just about chatbots. To help understand what it is about,

we’ve developed a framework which explains the broad broad

range of capabilities it o#ers. We call this the “capabilities stack”.

We see AI systems as having seven basic kinds of capability, each

building on the ones below it in the stack. From least complex to

most, these are: recognition, classi!cation, prediction,

recommendation, automation, generation and interaction.

Recognition

At its core, the kind of AI we are seeing in consumer products

today identi!es patterns. Unlike traditional coding, where

developers explicitly program how a system works, AI “learns”

these patterns from vast datasets, enabling it to perform tasks.

This “learning” is essentially just advanced mathematics that

turns patterns into complex probabilistic models – encoded in

so-called arti!cial neural networks.

Once learned, patterns can be recognised – such as your face,

when you open your phone, or when you clear customs at the 

airport.
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Pattern recognition is all around us – whether it’s license plate 

recognition when you park your car at the mall, or when the

police scan your registration. It’s used in manufacturing for

quality control to detect defective parts, in health care to identify 

cancer in MRI scans, or to identify potholes by using buses

equipped with cameras that monitor the roads in Sydney.

Classi!cation

Once an AI system can recognise patterns, we can train it to

detect subtle variations and categorise them. This is how your

photo app neatly organises albums by family members, or how

apps identify and label di#erent kinds of skin lesions. AI

classi!cation is also at work behind the scenes when phone

companies and banks identify spam and fraud calls.

In New Zealand, non-pro!t organisation Te Hiku developed an 

AI language model to classify thousands of hours of recordings

to help revitalise Te Reo Māori, the local indigenous language.

Prediction

When AI is trained on past data, it can be used to predict future

outcomes. For example, airlines use AI to predict the estimated 

arrival times of incoming "ights and to assign gates on time so

you don’t end up waiting on the tarmac.

Similarly, Google Flights uses AI to predict "ight delays even

before airlines announce them.

In Hong Kong, an AI prediction model saves taxpayer money by

predicting when a project needs early intervention to prevent it

overrunning its budget and completion date. And when you buy

stu# on Amazon, the ecommerce giant uses AI to predict 

demand and optimise delivery routes, so you get your packages

within hours, not just days.

Recommendation

Once we predict, we can make recommendations for what to do

next.

If you went to Taylor Swi$’s Eras tour concert at Sydney’s Accor

stadium, you were kept safe thanks to AI recommendations. A 

system funded by the New South Wales government used data

from multiple sources to analyse the movement and mood of

the 80,000 strong crowd, providing real-time recommendations

to ensure everyone’s safety.

AI-based recommendations are everywhere. Social media,

streaming platforms, delivery services and shopping apps all use

past behaviour patterns to present you with their “for you” pages.

Even pig farms use pig facial recognition and tracking to alert

farmers to any issues and recommend particular interventions.

Automation

It’s a small step from prediction and recommendation to full

automation.

In Germany, large wind turbines use AI to keep the lesser spotted

eagle safe. An AI algorithm detects approaching birds and

automatically slows down the turbines allowing them to pass

unharmed.

Closer to home, Melbourne Water uses AI to autonomously

regulate its pump control system to reduce energy costs by

around 20% per year. In Western Sydney, local buses on key 

routes are AI-enabled: if a bus is running late, the system predicts

its arrival at the next intersection and automatically green-lights

its journey.

Generation

Once we can encode complex patterns into neural networks, we

can also use these patterns to generate new, similar ones. This

works with all kinds of data – images, text, audio and video.

Image generation is now built into many new phones. Don’t like

the look on someone’s face? Change into a smile. Want a boat on

that lake? Just add it in. And it doesn’t stop there.

Tools such as Runway let you manipulate videos or create new 

ones with just a text prompt. ElevenLabs allows you to generate

synthetic voices or digitise existing ones from short recordings.

These can be used to narrate audiobooks, but also carry risks

such as deepfake impersonation.

And we haven’t even mentioned large language models such as

ChatGPT, which are transforming how we work with text and

how we develop computer code. Research by McKinsey found

that these models can cut the time required for complex coding

tasks by up to 50%.

Interaction

Finally, generative AI also makes it possible to mimic human-like

interactions.

Soon, virtual assistants, companions and digital humans will be

everywhere. They will attend your Zoom meeting to take notes

and schedule follow-up meetings.

Interactive AI assistants, such as IBM’s AskHR bot, will answer

your HR questions. And when you get home, your AI friend app

will entertain you, while digital humans on social media are

ready to sell you anything, any time. And with voice mode 

activated, even ChatGPT gets in on the inter-action.

Amid the excitement around generative AI, it is important to

remember that AI is more than chatbots. It impacts many things

beyond the "ashy conversational tools – o$en in ways that

quietly improve everyday processes.
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Debrief question

39

https://chatw.ch/hcai25

Under Lecture 2 section,  
click Debrief question 

When you are done, you may leave 

❗Next lecture will be on Thursday, September 25 (no lecture on Wednesday)

When you design an AI system, why is it useful to analyze the level of control × automation?

accounting, tax planning, and config-
uring computer systems.28

The prototypical exemplar for rep-
resenting knowledge in this paradigm 
is via symbolic relationships expressed 
in the form of “IF/THEN” rules,30 “se-
mantic networks,”35 or structured 
object representations.29 But it is dif-
ficult to express uncertainty in terms 
of these representations, let alone 
combine such uncertainties during 
inference, which prompted the devel-
opment of more principled graphical 
models for representing uncertainty in 
knowledge using probability theory.31

The exemplar in this paradigm was 
largely shaped by logic and the existing 
models of cognition from psychology, 
which viewed humans as having a long-
term and a short-term memory, and a 
mechanism for evoking them in a spe-
cific context. The knowledge declared 
by humans in expert systems, such as 
the rule “excess bilirubin high pallor,” 
constituted their long-term memory. 
An attention mechanism, also known 
as the inference engine or “control re-
gime,” evoked the rules depending on 
the context, and updated the system’s 
short-term memory accordingly. If a 
patient exhibited unusually high pal-
lor, for example, this symptom was 
noted in short-term memory and the 
appropriate rule was evoked from long-
term memory to hypothesize its cause, 
such as "excess bilirubin." In effect, the 
declaration of knowledge was separate 
from its application, which was con-
trolled by the attention mechanism.

Research in natural language pro-
cessing (NLP) was along similar lines, 
with researchers seeking to discover 
the rules of language. The expectation 
was that once these were fully speci-
fied, a machine would follow them in 
order to understand and generate lan-

sure of intelligence should consider 
how such capabilities are manifested 
across a wide range of tasks.

The Paradigm Shifts in AI
To understand the state of the art of AI 
and where it is heading, it is important 
to track its scientific history, especially 
the bottlenecks that stalled progress 
in each paradigm and the degree to 
which they were addressed by each 
paradigm shift.

The figure sketches out the his-
tory of AI from the expert systems 
era—which spanned the mid-1960s 
to the late 1980s—to the present. I do 
not cover the era of adversarial game-
playing algorithms and the emergence 
of graph-traversal search algorithms 
such as A*,16 which primarily fall into 
the realm of optimization and heuris-
tic search on well-specified problems. 
Indeed, game playing continues to be 
an active line of inquiry within AI, with 
the emergence of championship-level 
algorithms such as AlphaGo and its 
variants.42 I start with the era of knowl-
edge-based systems, which began to 
focus on the systematic representation 
and use of human knowledge at scale.

Expert systems. Expert systems are 
attractive in well-circumscribed do-
mains where human expertise is iden-
tifiable and definable. They perform 
well at specific tasks where this exper-
tise can be extracted through interac-
tions with humans, and it is typically 
represented in terms of relationships 
among situations and outcomes. AI 
was applied to diagnosis, planning, 
and design across a number of do-
mains, including healthcare, science, 
engineering, and business. The think-
ing was that if such systems performed 
at the level of human experts, they 
were intelligent.

An early successful demonstration 
of AI in medicine was the Internist 
system,33 which performed diagnosis 
in the field of internal medicine. In-
ternist represented expert knowledge 
using causal graphs and hierarchies 
relating diseases to symptoms. The 
rule-based expert system Mycin41 pro-
vided another early demonstration of 
diagnostic reasoning in the narrow 
domain of blood diseases. Expert sys-
tems were also successful in a number 
of other well-specified domains, such 
as engineering, mineral prospecting, 

guage.40 This turned out to be exceed-
ingly difficult to achieve.

The major hurdle of this paradigm 
of top-down knowledge specifica-
tion was the “knowledge engineering 
bottleneck.” It was challenging to ex-
tract reliable knowledge from experts, 
and equally difficult to represent and 
combine uncertainty in terms of rules. 
Collaborations between experts and 
knowledge engineers could take years 
or even decades, and the systems be-
came brittle at scale—rules that made 
sense in isolation often produced 
unexpected and undesirable results 
in the presence of many others. Fur-
thermore, researchers found that ex-
pert systems would often make errors 
in common-sense reasoning, which 
seemed intertwined with specialized 
knowledge. Evaluating such systems 
was also difficult, if one ever got to that 
stage. Human reasoning and language 
seemed much too complex and heter-
ogenous to be captured by top-down 
specification of relationships in this 
paradigm.

Machine learning. The center of 
gravity of AI began to tilt toward ma-
chine learning (ML) in the late 1980s 
and 1990s, with the maturation of da-
tabase technology, the emergence of 
the Internet, and the growing abun-
dance of observational and transac-
tional data.2 AI thinking shifted away 
from spoon-feeding highly specified 
human abstractions to the machine 
and toward automatically learning 
such relationships from data, guided 
by human intuition. While symbolic 
expert systems required humans to 
specify a model, ML enabled the ma-
chine to learn the model automati-
cally from curated examples. Model 
discovery was guided by a “loss func-
tion,” designed to directly or indi-

Figure. The history of artificial intelligence.
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One student’s model of search

41

10/30 have “magic” in their illustrations
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Your work from yesterday were added to OLAT

43

 X

Poll responses
Anonymous

This Teachable Machine is learning very fast with very 
few examples.


Anonymous

Did an acceptable job comparing stock photos of 
different dog breeds, somewhat correct in identifying 
mixes


Anonymous

If you add a background class, it kind of tunes out the 
background noise.


Anonymous

It recognised all our bottles (we trained it to be able to 
recognise three different ones) pretty accurately. Though 
as two of the bottles were white it had issues telling them 
apart from certain angles probably as we didn’t give 
enough information (aka pictures) for the model to be 
able to distinguish them. 


Anonymous

The model worked very well and recognized different 
phones as well as a protein drink reliably


Anonymous

Would be nice if it could flag things as unknown instead 
its not something it has seen during training


Anonymous

mixed objects can also be recognized 


Anonymous

It picked the distance to the object as a feature 


Anonymous

dogs v cats - 15 images each an it worked without 
exceptions

but we think it was also due to high quality of images & 
clear visibility of the animals


Anonymous

It picked the most distinguishable feature as the classifier 
- between me (Asian) and my friend (Slavic) it picked hair 
color


Anonymous

the more content you give, the better it works, although if 
it has so much content in the background, then it messes 
up a bit


Anonymous

The model works surprisingly well with little data, but 
struggles when objects are too similar or not in the 
training set, is highly influenced by how and with what 
quality it is trained, and often fails with new backgrounds 
or noisy data.


Anonymous

Quality of training data was important, if the hand was on 
the pictures in the training data, it often confused the 
items inside the hand


Anonymous

One of the issue that we faced while training the model 
was that we did training of model for a water bottle, and 
our bottle being transparent caused an issue as the 
model was catching the things in the background 


Anonymous

The overall performance of the model is underwhelming. 
The model even after rigourous training failed to identify 
simple images. The model predicted wrong class if the 
color of the item changed.


Anonymous

Works better with netural background rather than e.g., 
the classroom


Anonymous

Same objects with different colors are not recognized 
(black smartphone and white smartphone)


Anonymous

quickly functioned

 X

(Slides for today will be available around the middle of this lecture.)

https://chatw.ch/hcai25


