
Tools for thinking about research
Dr. Chat Wacharamanotham
University of Zurich

29 May 2025

1

https://chatw.ch/research-thinking

Use your laptop

Chatchavan Wacharamanotham

2

Lecturer at the Department of Informatics, University of Zurich, Switzerland

Previously: Assistant professor at University of Zurich; Lecturer at Swansea

University (UK); PhD in Human–Computer interaction from RWTH Aachen

University

Research: Improving how computers can help people do better, and

transparent science

Past research: Interaction techniques for touch input on and above screens

ชัชวาล วัชรมโนธรรม

https://chatw.ch/research-thinking

Use your laptop

Chatchavan Wacharamanotham

3

Works in the field of HCI since 2010

• 7 papers at the CHI (3 best paper awards; top 1%)

• 16 years reviewing for CHI (13 special recognitions on the reviews)

Roles in the CHI conferences: Associate Chair (2022–23) • Best Paper

Award Committee (2022) • Student Research Competition Co-chair (2023)

Roles in journals: Associate editor of IJHCS (International Journal of

Human-Computer Studies) • Organizer of JoVI (The Journal of

Visualization and Interaction)

ชัชวาล วัชรมโนธรรม

https://chatw.ch/research-thinking

Use your laptop

https://chi2025.acm.org
https://www.sciencedirect.com/journal/international-journal-of-human-computer-studies
https://www.journalovi.org

Chatchavan Wacharamanotham

4

Roles in the HCI communities in Thailand and Asia:

• Co-founded of the Bangkok SIGCHI Chapter (2017)

• Co-organized Asian CHI Symposia (2019–2020)

• Chaired the ACM SIGCHI Asia Committee (2024)

Thoughts:

• Evaluation methods for HCI-related research in Thailand

• Justifying conference publication as a valid outlet for HCI research

• Promoting HCI research: method, funding, and communities in

Thailand

ชัชวาล วัชรมโนธรรม

https://chatw.ch/research-thinking

Use your laptop

https://docs.google.com/document/d/15QcT0EkiYi1OAKUr8No8-TDQHxdQYLvdMWT3XNjOW3A/edit?tab=t.0#heading=h.e8uszfcw563g
https://drive.google.com/file/d/1PUxMT0ikF_6-nrhpFiCPdp0nxx9sBcIi/view?usp=sharing
https://docs.google.com/document/d/1MIiRdY-iyJCPUhA4wJJ7XAMA9k7OszDaqnmegrar3ZY/edit?usp=sharing

Goals

5

Questions that you should be able to answer at the end of this talk

• What conceptual tools that can help me understand research?

• What are ways to validate design/engineering research (beyond

questionnaires)?

https://chatw.ch/research-thinking

Use your laptop

Research as problem-solving

6

Research as problem-solving

7

‘corroborated’, ‘well-confirmed’ or otherwise justifiable
within the framework of contemporary epistemology.

With this definition, the benefit of problem-solving is that it
allows covering a wider scope of research than previous ac-
counts, which have been restricted to certain disciplines,
topics, or approaches (e.g., research-through-design [53],
interaction criticism [2], usability science [15], or interac-
tion science [21]). However, because Laudan developed his
view with natural and social sciences in mind, he missed
design and engineering contributions. Extending Laudan’s
typology to propose that research problems in HCI include
not only empirical and conceptual but also constructive
problems, we present the first typology developed to en-
compass most recognised research problems in HCI. It is
now possible to describe research contributions regardless
of the background traditions, paradigms, or methods. The
seemingly multi- or, rather, hyper-disciplinary field is—in
the end—about solving three types of problem. This reduc-
es the number of dimensions dramatically when one is talk-
ing about HCI.

Having built the conceptual foundation, we return to answer
four fundamental questions: 1) What is HCI research, 2)
what is good HCI research, 3) are we doing a good job as a
field, and 4) could we do an even better job?

We aim to show through these discussions that Laudan's
problem-solving view is not just ‘solutionism’. It offers a
useful, timeless, and actionable non-disciplinary stance to
HCI. Instead of asking whether research subscribes to the
‘right’ approach, a system is ‘novel’, or a theory is ‘true’,
one asks how it advances our ability to solve important
problems relevant to human use of computers. Are we ad-
dressing the right problems? Are we solving them well?
The view helps us contribute to some longstanding debates
about HCI. Moreover, we show that the view is generative.
We provide ideas on how to apply it as a thinking tool.
Problem-solving capacity can be analysed for individual
papers or even whole sub-topics and the field at large. It al-

so works as a springboard for generating ideas to improve
research agendas.

We conclude on a positive note by arguing that HCI is nei-
ther unscientific nor non-scientific (as some have claimed
[40]) or in deep crisis [25]. Such views do not recognise the
kinds of contributions being made. Instead, on many
counts, HCI has improved problem-solving capacity in hu-
man use of computing remarkably and continues to do so.
However, as we show, these contributions tend to focus on
empirical and constructive problem types. In a contrast to
calls for HCI to be more scientific [21], interdisciplinary
[3], hard [36], soft [9], or rigorous [40], the systematic
weakness of HCI is, in fact, our inability to produce con-
ceptual contributions (theories, methods, concepts, and
principles) that link empirical and constructive research.

THREE TYPES OF RESEARCH PROBLEM IN HCI
Our first point is that the key to understanding HCI as prob-
lem-solving is the recognition that its research efforts clus-
ter around a few recurring problem types. We effectively
‘collapse’ the (apparent) multiplicity of research efforts un-
der a few problem types. This not only simplifies HCI but
also transcends some biasing presumptions arising from
methodology, theory, or discipline. One can now see simi-
larities and differences between, say, an observational study
of a novel technology and a rigorous laboratory experiment,
without being bound by their traditions.

In this section, we 1) introduce Laudan’s notion of research
problem briefly, 2) extend his typology to cover engineer-
ing and design contributions to HCI, and 3) argue that con-
tributions in HCI can be classified via this typology.

Laudan originally distinguished only two types of research
problem—empirical and conceptual. These are defined in
terms of absence or inabilities to understand or achieve
some ends. As we argue below, the two types are applicable
also to HCI. However, to not let design ‘off the hook’, HCI
should cover engineering and design contributions. This as-
pect is clear in almost all definitions of HCI as a field, in-

Figure 1. This paper analyses HCI research as problem-solving. Scientific progress in HCI is defined as improvements in our

ability to solve important problems related to human use of computing. Firstly, a subject of enquiry is defined and its im-
provement potential analysed. Then, a research problem is formulated. The outcome of the research (i.e., the solution) is evalu-

ated for its contribution to problem-solving capacity defined in terms of five criteria.

Oulasvirta, A., & Hornbæk, K. (2016, May). HCI research as problem-solving. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 4956-4967).

https://doi.org/10.1145/2858036.2858283

Research problems in HCI

8

Empirical ConceptualConstructive
• Unknown phenomena
• Unknown factors
• Unknown effects

• Implausibility
• Inconsistency
• Incompatibility

• no known solution
• partial, ineffective, or
inefficient solution

• insufficient knowledge or
resources for implementation
or deployment

Example research problems about “AI fairness”

Which AI application are unfair?
Who are affected?
What causes it?

What are possible ways to solve AI unfairness?
Which ways are cost-effective?
How to measure the effectiveness of the solutions?

Oulasvirta, A., & Hornbæk, K. (2016, May). HCI research as problem-solving. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 4956-4967).

https://doi.org/10.1145/2858036.2858283

Exercise: Identify types of your research problem

You have 10 minutes to:

1. Locate your seat on the Miro board

2. Write 1–2 sentences about your research problem

3. Add one or more tags: #empirical, #constructive, #conceptual

4. Think:

• Why did you choose these tags?

• Could there be other possible tags that are applicable?

Together with a person next to you, take 10 minutes per person:

• Give an elevator-pitch of your research

• Discuss your tags:

• Do other share your classification?

• What are other tags that may be applicable?

9

Miro

Constructive
• no known solution
• partial, ineffective, or inefficient
solution

• insufficient knowledge or
resources for implementation or
deployment

Empirical
• Unknown phenomena
• Unknown factors
• Unknown effects

Conceptual
• Implausibility
• Inconsistency
• Incompatibility

Types of research problem

To learn more about this framework…

10

HCI Research as Problem-Solving

Antti Oulasvirta
Aalto University, Finland

Kasper Hornbæk
University of Copenhagen, Denmark

ABSTRACT
This essay contributes a meta-scientific account of human–
computer interaction (HCI) research as problem-solving.
We build on the philosophy of Larry Laudan, who develops
problem and solution as the foundational concepts of sci-
ence. We argue that most HCI research is about three main
types of problem: empirical, conceptual, and constructive.
We elaborate upon Laudan’s concept of problem-solving
capacity as a universal criterion for determining the pro-
gress of solutions (outcomes): Instead of asking whether re-
search is ‘valid’ or follows the ‘right’ approach, it urges us to
ask how its solutions advance our capacity to solve important
problems in human use of computers. This offers a rich, gen-
erative, and ‘discipline-free’ view of HCI and resolves some
existing debates about what HCI is or should be. It may also
help unify efforts across nominally disparate traditions in
empirical research, theory, design, and engineering.

Author Keywords
Human–computer interaction; Problem-solving; Scientific
progress; Research problem; Larry Laudan

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous

INTRODUCTION
The spark for writing this essay comes from feelings of
confusion, and even embarrassment, arising in describing
our field to students and other researchers. What is human–
computer interaction (HCI) as a field? As numerous ideas
and disciplines contribute to HCI, its unique character is
elusive. Although HCI is in intellectual debt to many other
fields, few would agree that it reduces to them. It has its
own subject of enquiry, which is not part of the natural or
social sciences. It does not belong to engineering, computer
science, or design either. So what is it?

The essay has a grand ambition: to develop a conceptually
coherent account of the ‘95% of HCI research’. We know
of no other paper offering an attempt to address the field as
a whole. We are motivated first and foremost by the intel-

lectual enigma pertaining to what HCI is: There is no ac-
cepted account that would tell how HCI’s numerous ap-
proaches contribute to pursuit of shared objectives. In con-
trast, HCI has been criticised for lack of ‘motor themes,
mainstream topics, and schools of thought’ [25] and for be-
ing fragmented ‘across topics, theories, methods, and peo-
ple’ [38]. Consequently, some have called for ‘a hard sci-
ence’ [36], others for ‘strong concepts’ [19] or an ‘in-
ter-discipline’ [3]. These are serious concerns with serious
implications for the field.

Why bother with a meta-scientific paper at a technical con-
ference? Because the stakes are high. Philosophies of sci-
ence are at worst an impotent topic worthy of hallway con-
versations. But if the critics are right, our field is seriously
crippled, from the project level to the larger arenas of re-
search Realpolitik. Lacking a coherent view of what HCI is,
and what good research in HCI is, how can we communi-
cate results to others, assess research, co-ordinate efforts, or
compete? In addition, as we show, philosophical views of-
fer thinking tools that can aid in generating ideas and gen-
erally enhance the quality of research.

The contribution here lies in describing HCI as prob-
lem-solving. An overview is given in Figure 1. The view
originates from Larry Laudan’s philosophy of science [28].
Laudan describes scientific progress in terms of two foun-
dational concepts: research problem and solution. Laudan's
‘problem’ is not what we mean by the term in ordinary lan-
guage. It is defined via inabilities and absences occurring in
descriptions; knowledge; or, as often in HCI, constructive
solutions. For example, a research problem may involve
lack of understanding of how colour schemes on a web
page affect the aesthetic experience of its use. More gener-
ally, Laudan’s research problem subsumes what we tradi-
tionally understand in HCI as a ‘design problem’ but also
problems to do with theory and empirical research.

Most of our argumentation builds on a concept put forth by
Laudan that links problems with solutions: problem-solving
capacity. For Laudan, a solution is something special, too.
In the above-mentioned case of aesthetic perception of web
pages, possible solutions range from descriptions of
self-reports to models of aesthetic impressions. These solu-
tions change the status of the inabilities and absences but in
different ways. Laudan qualifies this in terms of improve-
ments to problem-solving capacity. This is counter to some
traditional notions of progress [28, p. 14]:

In appraising the merits of theories, it is more important
to ask whether they constitute adequate solutions to sig-
nificant problems than it is to ask whether they are ‘true’,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CHI'16, May 07-12, 2016, San Jose, CA, USA

© 2016 ACM. ISBN 978-1-4503-3362-7/16/05…$15.00

DOI: http://dx.doi.org/10.1145/2858036.2858283

Problem-solving or not? The Boundaries of HCI Research #chi4good, CHI 2016, San Jose, CA, USA

‘corroborated’, ‘well-confirmed’ or otherwise justifiable
within the framework of contemporary epistemology.

With this definition, the benefit of problem-solving is that it
allows covering a wider scope of research than previous ac-
counts, which have been restricted to certain disciplines,
topics, or approaches (e.g., research-through-design [53],
interaction criticism [2], usability science [15], or interac-
tion science [21]). However, because Laudan developed his
view with natural and social sciences in mind, he missed
design and engineering contributions. Extending Laudan’s
typology to propose that research problems in HCI include
not only empirical and conceptual but also constructive
problems, we present the first typology developed to en-
compass most recognised research problems in HCI. It is
now possible to describe research contributions regardless
of the background traditions, paradigms, or methods. The
seemingly multi- or, rather, hyper-disciplinary field is—in
the end—about solving three types of problem. This reduc-
es the number of dimensions dramatically when one is talk-
ing about HCI.

Having built the conceptual foundation, we return to answer
four fundamental questions: 1) What is HCI research, 2)
what is good HCI research, 3) are we doing a good job as a
field, and 4) could we do an even better job?

We aim to show through these discussions that Laudan's
problem-solving view is not just ‘solutionism’. It offers a
useful, timeless, and actionable non-disciplinary stance to
HCI. Instead of asking whether research subscribes to the
‘right’ approach, a system is ‘novel’, or a theory is ‘true’,
one asks how it advances our ability to solve important
problems relevant to human use of computers. Are we ad-
dressing the right problems? Are we solving them well?
The view helps us contribute to some longstanding debates
about HCI. Moreover, we show that the view is generative.
We provide ideas on how to apply it as a thinking tool.
Problem-solving capacity can be analysed for individual
papers or even whole sub-topics and the field at large. It al-

so works as a springboard for generating ideas to improve
research agendas.

We conclude on a positive note by arguing that HCI is nei-
ther unscientific nor non-scientific (as some have claimed
[40]) or in deep crisis [25]. Such views do not recognise the
kinds of contributions being made. Instead, on many
counts, HCI has improved problem-solving capacity in hu-
man use of computing remarkably and continues to do so.
However, as we show, these contributions tend to focus on
empirical and constructive problem types. In a contrast to
calls for HCI to be more scientific [21], interdisciplinary
[3], hard [36], soft [9], or rigorous [40], the systematic
weakness of HCI is, in fact, our inability to produce con-
ceptual contributions (theories, methods, concepts, and
principles) that link empirical and constructive research.

THREE TYPES OF RESEARCH PROBLEM IN HCI
Our first point is that the key to understanding HCI as prob-
lem-solving is the recognition that its research efforts clus-
ter around a few recurring problem types. We effectively
‘collapse’ the (apparent) multiplicity of research efforts un-
der a few problem types. This not only simplifies HCI but
also transcends some biasing presumptions arising from
methodology, theory, or discipline. One can now see simi-
larities and differences between, say, an observational study
of a novel technology and a rigorous laboratory experiment,
without being bound by their traditions.

In this section, we 1) introduce Laudan’s notion of research
problem briefly, 2) extend his typology to cover engineer-
ing and design contributions to HCI, and 3) argue that con-
tributions in HCI can be classified via this typology.

Laudan originally distinguished only two types of research
problem—empirical and conceptual. These are defined in
terms of absence or inabilities to understand or achieve
some ends. As we argue below, the two types are applicable
also to HCI. However, to not let design ‘off the hook’, HCI
should cover engineering and design contributions. This as-
pect is clear in almost all definitions of HCI as a field, in-

Figure 1. This paper analyses HCI research as problem-solving. Scientific progress in HCI is defined as improvements in our

ability to solve important problems related to human use of computing. Firstly, a subject of enquiry is defined and its im-
provement potential analysed. Then, a research problem is formulated. The outcome of the research (i.e., the solution) is evalu-

ated for its contribution to problem-solving capacity defined in terms of five criteria.

Problem-solving or not? The Boundaries of HCI Research #chi4good, CHI 2016, San Jose, CA, USA

Oulasvirta, A., & Hornbæk, K. (2016, May). HCI research as problem-solving. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 4956-4967).

Velloso, E., & Hornbæk, K. (2025). Theorising in HCI using Causal Models. In Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems

Theorising in HCI using Causal Models
Eduardo Velloso

School of Computer Science
University of Sydney

Sydney, New South Wales, Australia
eduardo.velloso@sydney.edu.au

Kasper Hornbæk
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark

kash@di.ku.dk

Abstract
Although the literature on Human-Computer Interaction (HCI) cat-
alogues many theories, it o�ers surprisingly few tools for theorising.
This paper critiques dominant approaches to engaging with the-
ory and proposes a working model for theorising in HCI. We then
present graphical causal modelling as an e�ective theorising tool.
This includes a step-by-step guide to building causal models and
examples of their use in di�erent stages of the research process.
We explain how causal models help develop method-agnostic rep-
resentations of research problems using directed acyclic graphs,
identify potential confounders, and construct alternative interpre-
tations of data. Finally, we discuss their limitations and challenges
for adoption by the HCI community.

CCS Concepts
• Human-centered computing ! HCI theory, concepts and
models; • Mathematics of computing ! Causal networks.

Keywords
Causal modelling, HCI theory, directed acyclic graphs
ACM Reference Format:
Eduardo Velloso and Kasper Hornbæk. 2025. Theorising in HCI using Causal
Models. In CHI Conference on Human Factors in Computing Systems (CHI
’25), April 26–May 01, 2025, Yokohama, Japan. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3706598.3713789

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713789

1 Introduction
Human-Computer Interaction has a theory problem. HCI lies at
the intersection of a diverse set of disciplines with a wide range of
ontological and epistemological commitments, methods, and stan-
dards of evidence, welcoming various types of contributions [80].
It would be unsurprising to attend a SIGCHI conference where a
paper about a series of statistical analyses of experimental data
about an interaction design is presented side-by-side with one
about an auto-ethnography of an author’s experience of a similar
interaction, followed by one describing an interactive system to
help improve that interaction. Such methodological variety has
created a rich and diverse research community but has led to in-
consistent and haphazard development and application of theory.
Such an abundance of frameworks, each o�ering a di�erent lens
and methodological toolkit for understanding human-computer

interactions, has led to a fragmented landscape where researchers
struggle to build upon each other’s work. This paper aims to bene�t
the working researcher who wants tools to help think about re-
search questions. In contrast to the extensive literature on research
methods (e.g. [14, 21, 39]) and speci�c theories (e.g. [12, 57]), there
are few resources on how to theorise in HCI. This paper takes a step
towards minimising this issue by o�ering practical tools for HCI
theorising, emphasising the process of developing new ideas and
insights as opposed to the �nal product of theory.

The philosopher Isaiah Berlin drew on the ancient Greek poet
Archilocus to make the distinction between “hedgehog thinkers”
and “fox thinkers”—“a fox knows many things, but a hedgehog
knows one big thing” [8]. Hedgehogs try to relate their observations
to one overarching theory. In contrast, the fox pursues many direc-
tions without trying to �t them all under the same umbrella, seeing
the world in its full complexity. Every year in the CHI proceedings
(and similar venues), one can �nd references to a wide range of
theories—self-determination theory [70], feminist theories [5], criti-
cal race theory [49], entanglement theories [26], activity theory [3],
behaviour change theory [17], theory of planned behaviour [42],
soma design [66], �ow theory [16], among many others. These are
theories for hedgehogs—they provide widely encompassing lenses
through which to investigate the relationships between people and
interactive systems.

This kind of theory can seem daunting to newcomers in the �eld.
It is widely applicable, complex to grasp, and di�cult to connect
to everyday research questions. The hedgehog’s emphasis on the-
ories can give the impression that developing and working with
theory is a privilege for senior members of the community. As a
result, we are left with a shallow engagement with theory, as re-
searchers super�cially adopt theoretical frameworks as a means
of suggesting alignment with an intellectual movement—a kind of
theoretical grandstanding—rather than deeply testing, integrating,
or developing them.

This paper presents an alternative way of approaching theory in
HCI—graphical causal modelling—a way more suited to foxes and to
theorising in everyday research. Our goal is to present an approach
that has been gaining traction outside the �eld (e.g. epidemiol-
ogy [68], nutrition [72], psychology [58]) but is still under-utilised
in HCI, even though it �ts its ethos. Much has been written about
the statistical and computational properties of causal models (e.g.
do-calculus [51] and structural equation models [9]), but here we
focus on their applications as tools for theorising in an HCI context.
We explore opportunities and limitations of the approach with a
range of HCI examples, o�ering a practical way for future authors
to make their theoretical claims explicit in their papers. We high-
light how causal models explicate theoretical assumptions, reveal
the theoretical value of research questions, support the creation and

1

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Velloso and Hornbæk

squeaky hinge of your bathroom door. In contrast, the solution
space encompasses all possible solutions to every problem, both
the ones that exist and the ones that do not. These solutions can
take any shape, including physical artefacts (e.g. a sensor), business
processes (e.g. a set of indicators for assessing workers’ perfor-
mance), software (e.g. a smartphone app), and so on. The direct link
between problem space and solution space is not the concern of
theory; rather, it is the concern of practice.

The design process can begin with either of those. A UX designer
who wants to improve the commute experience of visually impaired
citizens starts the process in the problem space. An engineer who
developed a new metamaterial that can change shape and is inter-
ested in exploring its potential applications in interactive devices
starts their process in the solution space.

The process of exploring each space involves inquiry (for ex-
plicating problems) and invention (for generating solutions) [31],
framing and reframing [18], and is iterative and non-linear. Lessons
learned in exploring one space in�uence the exploration of the
other. For example, one might start from a human need (Problem
Space), develop a prototype solution (Solution Space), and, through
its evaluation, reveal deeper problems hidden beneath the surface
(Problem Space), which, in turn, inspire new solutions (Solution
Space).

This simpli�ed model provides a useful abstraction for us to think
about the design process and tease out the distinction between HCI
practice and research. Consider the example of an organisation that
maintains a popular website. Their IT team identi�ed an opportu-
nity to improve customer conversion rates, so they conducted a
series of observation sessions followed by interviews with current
users and potential users who are not currently engaging with the
website. Based on their �ndings, they identi�ed several potential
improvements that could be made to their current interface and
built a new version of the system. They deployed it in an A/B test,
serving it to half of the incoming users within a time window and

Problem
Space

Solution
Space

Theory
Space

THEORISING

PRACTICE

Figure 1: HCI theorising vs practice: both seek to link the
problem and solution spaces, but HCI research must also
make use of theory in their explorations and contribute back
to theory. Blue arrows indicate theorising activities.

measuring conversion rates in each condition. They found that the
new version of the website o�ered improvements over the previous
version. Though valuable for the organisation, does a project like
this o�er a research contribution? If not, what is it missing?

To understand this gap, we must turn our attention to a third
space—the theory space. The theory space contains all possible the-
ories in the huge diversity of forms they come in. These can include
causal statements, graphical models, conceptual frameworks, and
sets of laws, among many others. Our argument is that a design
project that does not contribute to the theory space lacks something
central to research. Does this mean that without a contribution to
theory, the project is worthless? No. Many design projects do not
make a direct contribution to theory but still have a huge impact.
Does it mean that it lacks rigour? No. As the example shows, though
rigour is necessary for a contribution to theory, it is not su�cient.
Does it mean that it should not see the light of day in the form of
a publication? No. There is still room for white papers, case stud-
ies, and works-in-progress tracks to capture current practice and
inspire future projects. However, in our view, the link to the theory
space is essential for a research contribution. In summary, we �nd
that academic research should build upon theory and contribute
back to theory. In other words, it should involve theorising.

2.3.2 Tactics in Theorising. Relevant works from di�erent disci-
plines have proposed di�erent tactics for theorising. Weick [77],
for instance, proposed seven, namely abstracting, generalizing, re-
lating, selecting, explaining, synthesising, and idealising. The idea
here is that instead of focusing on a particular form or purpose of
theory, the focus is on the processes that develop it. Abstracting, for
instance, is about the progressive re�nement of ideas to a more
general, abstract form; this might help relate to existing theoretical
ideas or formulate one’s ideas in the most general way possible.

As another example, Van Dongen et al. focused on productive
explanation [73]. In their model of productive explanation, a theo-
rist �rst articulates a verbal theory—a narrative that helps to make
sense of a phenomenon but that is not yet speci�c enough for
testing predictions. They then explicate this verbal theory into
a formal model containing precise statements about components
and relations present in the system. Such a formal model is then
used to produce a statistical pattern that reproduces the observed
phenomenon. In this framework, an explanation can be evaluated
according to the precision of the formal models consistent with it,
the robustness with which the phenomenon is reproduced through
its formal models, and the empirical relevance of its components
in terms of how necessary they are to produce the statistical pat-
tern representing the phenomenon. Breakdowns in the productive
explanation chain lead to problems, including empty formalism
(no verbal theory), illusory explanation (the formal model does
not reproduce the statistical pattern), incorrect pattern (the statisti-
cal pattern is not a good representation of the phenomenon), and
phantom phenomenon (the phenomenon being modelled does not
exist).

Figure 1 suggests that theorising is using these tactics to move
within the theory space, between the theory space and the problem
space, and between the theory space and the solution space. Cu-
riously, however, we have plenty of known methods for charting
the problem and solution spaces. Unfortunately, despite the work

4

Theorising in HCI using Causal Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

of Weick [77], we have much less support for theorising. The mul-
tidisciplinarity of HCI ampli�es this issue by making it di�cult
to �nd a common ground to reconcile perspectives from di�erent
backgrounds. What follows is an exploration of doing so using
causal models, which can o�er a shared language to make theoreti-
cal claims and think about research questions with people from all
backgrounds.

3 Introduction to causal models
Causal models are conceptual and statistical tools used to represent
and analyse causal relationships between variables within a system.
The origins of causal modelling date back to the early 1900s with
Sewall Wright’s path analysis [81] and were later extended with
the work of Spirtes et al. [65] and Pearl [51]. In this paper, we focus
on the conceptual application of causal models for making theo-
retical claims in the form of directed acyclic graphs, along with the
verbal explanations of assumptions and mechanisms that govern the
relationships depicted therein. Although we leave a full description
of their statistical properties outside the scope of this paper, we
refer the reader to Pearl [52] for an accessible introduction to their
applications in causal inference.

3.1 What does a causal model look like?
In a theorising context, causal models include a formal represen-
tation that explains how theoretical concepts are causally related.
They include the assumptions about the �ow of causality and expla-
nations about the mechanisms through which these causes occur.
Though these models can be expressed mathematically, here we
focus on their conceptual representation in the form of a directed
acyclic graph accompanied by corresponding textual explana-
tions.

In causal modelling, directed acyclic graphs (DAGs) visually rep-
resent the causal assumptions behind the process that generated
the observed data. Here, we take a counterfactual view of causa-
tion as per Pearl [51], so saying that X causes Y means that if X
had been di�erent, Y is likely to have been di�erent, too. These
causal relationships are probabilistic, meaning that they increase or
decrease the likelihood of observing an outcome but do not guar-
antee it. This acknowledges the in�uence of other uncontrolled
factors and inherent variability in the data. DAGs are heuristic and
qualitative—though they can help you build and interpret your sta-
tistical models, they do not explicitly model parameters. Like other
graphs, DAGs are comprised of nodes—boxes or circles representing
theoretical concepts—and directed edges—arrows that indicate a
causal relationship. DAGs are acyclic, meaning that they only allow
single-headed arrows, and the causes in the model only �ow in one
direction—no circular causation is allowed: If you follow the arrows
starting from any node, you will never return to the same node.
This is because they assume that causality is unidirectional—causes
precede e�ects and do not loop back. Feedback and time-dependent
processes can be modelled by creating separate nodes for states of
theoretical concepts at each point in time.

Figure 2 shows a DAG with some of its most important concepts.
A research project is typically interested in estimating the e�ect of
one or more causes of interest on one or more outcomes of interest.

Cause of
interest

Collider

Outcome
of interest

Confounder

Mediator

Figure 2: Basic elements of a directed acyclic graph: cause,
outcome, mediator, confounder (common cause), and collider
(common e�ect).

This e�ect is the causal estimand. Sometimes, the researcher is inter-
ested in the total e�ect of the cause of interest (e.g. an experimental
intervention) on an outcome of interest (e.g. a measured dependent
variable), encompassing all possible causal pathways. However,
there are cases where the researcher might be interested in its di-
rect e�ect, excluding any e�ects mediated by other variables. The
variables that account for these relationships are called mediators,
and they explain why a certain causal e�ect exists. For example,
when testing the e�ect of a new interface design on the perceived
usability of a website, the team might be interested in the total e�ect
of the design or in the individual contribution of each new feature
of the design (e.g. the new layout, the new colour scheme)—the
e�ect of these features, therefore, mediate the e�ect of the interface
design. Other variables might bias the observed causal estimand if
they are not appropriately accounted for. Confounders are variables
that in�uence both the cause and the outcome of interest and, if not
controlled for, can bias the e�ect estimate. Colliders are common
e�ects of the cause and outcome of interest. They should not be
controlled for, as adjusting for colliders can create spurious asso-
ciations between the cause and outcome of interest, even if one
does not exist. We will revisit and show examples of these biases in
Section 4.5.

The visual nature of DAGs makes theoretical assumptions easy
to visualise and discuss. Their simplicity allows those with mini-
mal formal training in causal inference or research design to ex-
plore complex relationships between variables. Whether formally
speci�ed by a research team, sketched out during a brainstorm-
ing session, or discussed on the back of a napkin with a research
participant, DAGs provide a structured way to articulate causal
hypotheses. Such versatility makes them a powerful tool for theo-
rising in a �eld where consultative and collaborative practices are at
the core of its ethos. Nevertheless, DAGs support robust statistical
methods, with packages in R (e.g. dagitty [69]) and python (e.g.
DoWhy [60]) for drawing and analysing causal graphs. In addition, re-
cent works in the �eld of Information Visualisation have produced
excellent causal visualisation tools that can support theorising with
DAGs [29, 75, 76]. As a recent example, Guo et al. [29]’s CausalVis
supports not only causal diagramming with DAGs but also causal
inference tasks, including cohort construction and re�nement and
treatment e�ect exploration.

5

https://doi.org/10.1145/2858036.2858283
https://doi.org/10.1145/3706598.3713789

Constructive research

11

12

ISPRS Int. J. Geo-Inf. 2018, 7, 63 2 of 25

solutions, multiple executions of single-objective optimization are conducted by using different sets
of transformation parameters such as weights. For example, Huang et al. [17] proposed a novel
approach that adaptively alters the objective weights according to the largest unexplored feasible
region to produce a set of solutions. However, because multiple single-objective optimizations have to
be repeatedly carried out, the whole procedure could be computationally expensive.

The Pareto approach originated from the concept of Pareto optimality (Pareto, 1965, originally
published in 1896). A solution is Pareto optimal when no other solution is as good or better with respect
to all objective functions and when it is also strictly better in at least one objective function than any
other solution [18]. A Pareto-optimal solution set or Pareto front (shown in Figure 1) can be obtained
by using the Pareto approach integrated with heuristic algorithms [19–25], which involves constructing
new solutions iteratively and preserving Pareto-optimal solutions selectively. The solutions on the
Pareto front reflect different tradeoffs among the multiple objectives [5]. Because the Pareto approach
has the advantage that an entire Pareto front can be achieved by only one computation, it can better
meet the requirements of multi-objective optimal decision-making.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 2 of 26

optimal solutions, multiple executions of single-objective optimization are conducted by using
different sets of transformation parameters such as weights. For example, Huang et al. [17] proposed
a novel approach that adaptively alters the objective weights according to the largest unexplored
feasible region to produce a set of solutions. However, because multiple single-objective
optimizations have to be repeatedly carried out, the whole procedure could be
computationally expensive.

The Pareto approach originated from the concept of Pareto optimality (Pareto, 1965, originally
published in 1896). A solution is Pareto optimal when no other solution is as good or better with
respect to all objective functions and when it is also strictly better in at least one objective function
than any other solution [18]. A Pareto-optimal solution set or Pareto front (shown in Figure 1) can be
obtained by using the Pareto approach integrated with heuristic algorithms [19–25], which involves
constructing new solutions iteratively and preserving Pareto-optimal solutions selectively. The
solutions on the Pareto front reflect different tradeoffs among the multiple objectives [5]. Because the
Pareto approach has the advantage that an entire Pareto front can be achieved by only one
computation, it can better meet the requirements of multi-objective optimal decision-making.

Figure 1. Pareto solutions.

Recently, studies on MOLA have applied some Pareto-based heuristic algorithms, including
evolutionary algorithms [7,18,26,27], simulated annealing (SA) [3] and the artificial immune system
(AIS) [28]. Duh and Brown [3] developed a knowledge-informed Pareto simulated annealing
approach (PSA) to solve the MOLA problem. Based on an initial solution set that includes the best
solution of each single objective function and some random feasible solutions, PSA can obtain a
Pareto front by iteratively executing the following steps: (1) new solution construction,
(2) dominance assessments, (3) Pareto solution set updating, (4) objective-weight calculations and
(5) new solution acceptance judgments. Meanwhile, PSA defined two knowledge-informed
rules—the compactness rule and the suitability rule—to monitor the construction of new solutions.
However, these rules were used only on the solutions with the largest weight values in any objective
direction, which resulted in limited improvement of the qualities of all new solutions.

Huang et al. [28] proposed an improved artificial immune system method for multi-objective
land-use allocation (AIS-MOLA). Initially, based on each random solution, the mutation strategy of
random exchange and the selection strategy of compromise programming [29] were used to
generate and preserve new solutions. After cloning some non-dominated solutions, new solutions
were constructed using the crossover strategy. By such iterative calculations, the Pareto front can be
obtained. Experiments revealed that AIS-MOLA achieved better results in both simulated and
practical land-use allocation than PSA [3]. However, because only completely random strategies
were used in the phase of new solution construction and no auxiliary knowledge was imported to
aid in navigating the spatial search to areas where global optima were located, we believe that there

Figure 1. Pareto solutions.

Recently, studies on MOLA have applied some Pareto-based heuristic algorithms, including
evolutionary algorithms [7,18,26,27], simulated annealing (SA) [3] and the artificial immune system
(AIS) [28]. Duh and Brown [3] developed a knowledge-informed Pareto simulated annealing approach
(PSA) to solve the MOLA problem. Based on an initial solution set that includes the best solution of
each single objective function and some random feasible solutions, PSA can obtain a Pareto front by
iteratively executing the following steps: (1) new solution construction, (2) dominance assessments,
(3) Pareto solution set updating, (4) objective-weight calculations and (5) new solution acceptance
judgments. Meanwhile, PSA defined two knowledge-informed rules—the compactness rule and the
suitability rule—to monitor the construction of new solutions. However, these rules were used only
on the solutions with the largest weight values in any objective direction, which resulted in limited
improvement of the qualities of all new solutions.

Huang et al. [28] proposed an improved artificial immune system method for multi-objective
land-use allocation (AIS-MOLA). Initially, based on each random solution, the mutation strategy of
random exchange and the selection strategy of compromise programming [29] were used to generate
and preserve new solutions. After cloning some non-dominated solutions, new solutions were
constructed using the crossover strategy. By such iterative calculations, the Pareto front can be obtained.
Experiments revealed that AIS-MOLA achieved better results in both simulated and practical land-use
allocation than PSA [3]. However, because only completely random strategies were used in the phase
of new solution construction and no auxiliary knowledge was imported to aid in navigating the spatial

Left diagram from Yang L et al. (2018). A Knowledge-Informed and Pareto-Based Artificial Bee Colony Optimization Algorithm for Multi-Objective Land-Use Allocation. ISPRS International
Journal of Geo-Information. 2018; 7(2):63.
Right diagram from Greenberg et al. (2012) Sketching User Experience — The Workbook

Satisficing

13

Producing any one of what might well be a large range of satisfactory

solutions rather than attempting to generate the one hypothetically-

optimum solution.

Etymology: Satisfy + sacrifice

Satisficing concept: Simon, H A The sciences of the artificial MIT Press, Cambridge, MA, USA (1969)
Left diagram from Yang L et al. (2018). A Knowledge-Informed and Pareto-Based Artificial Bee Colony Optimization Algorithm for Multi-Objective Land-Use Allocation. ISPRS
International Journal of Geo-Information. 2018; 7(2):63.
Right diagram from Greenberg et al. (2012) Sketching User Experience — The Workbook

ISPRS Int. J. Geo-Inf. 2018, 7, 63 2 of 25

solutions, multiple executions of single-objective optimization are conducted by using different sets
of transformation parameters such as weights. For example, Huang et al. [17] proposed a novel
approach that adaptively alters the objective weights according to the largest unexplored feasible
region to produce a set of solutions. However, because multiple single-objective optimizations have to
be repeatedly carried out, the whole procedure could be computationally expensive.

The Pareto approach originated from the concept of Pareto optimality (Pareto, 1965, originally
published in 1896). A solution is Pareto optimal when no other solution is as good or better with respect
to all objective functions and when it is also strictly better in at least one objective function than any
other solution [18]. A Pareto-optimal solution set or Pareto front (shown in Figure 1) can be obtained
by using the Pareto approach integrated with heuristic algorithms [19–25], which involves constructing
new solutions iteratively and preserving Pareto-optimal solutions selectively. The solutions on the
Pareto front reflect different tradeoffs among the multiple objectives [5]. Because the Pareto approach
has the advantage that an entire Pareto front can be achieved by only one computation, it can better
meet the requirements of multi-objective optimal decision-making.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 2 of 26

optimal solutions, multiple executions of single-objective optimization are conducted by using
different sets of transformation parameters such as weights. For example, Huang et al. [17] proposed
a novel approach that adaptively alters the objective weights according to the largest unexplored
feasible region to produce a set of solutions. However, because multiple single-objective
optimizations have to be repeatedly carried out, the whole procedure could be
computationally expensive.

The Pareto approach originated from the concept of Pareto optimality (Pareto, 1965, originally
published in 1896). A solution is Pareto optimal when no other solution is as good or better with
respect to all objective functions and when it is also strictly better in at least one objective function
than any other solution [18]. A Pareto-optimal solution set or Pareto front (shown in Figure 1) can be
obtained by using the Pareto approach integrated with heuristic algorithms [19–25], which involves
constructing new solutions iteratively and preserving Pareto-optimal solutions selectively. The
solutions on the Pareto front reflect different tradeoffs among the multiple objectives [5]. Because the
Pareto approach has the advantage that an entire Pareto front can be achieved by only one
computation, it can better meet the requirements of multi-objective optimal decision-making.

Figure 1. Pareto solutions.

Recently, studies on MOLA have applied some Pareto-based heuristic algorithms, including
evolutionary algorithms [7,18,26,27], simulated annealing (SA) [3] and the artificial immune system
(AIS) [28]. Duh and Brown [3] developed a knowledge-informed Pareto simulated annealing
approach (PSA) to solve the MOLA problem. Based on an initial solution set that includes the best
solution of each single objective function and some random feasible solutions, PSA can obtain a
Pareto front by iteratively executing the following steps: (1) new solution construction,
(2) dominance assessments, (3) Pareto solution set updating, (4) objective-weight calculations and
(5) new solution acceptance judgments. Meanwhile, PSA defined two knowledge-informed
rules—the compactness rule and the suitability rule—to monitor the construction of new solutions.
However, these rules were used only on the solutions with the largest weight values in any objective
direction, which resulted in limited improvement of the qualities of all new solutions.

Huang et al. [28] proposed an improved artificial immune system method for multi-objective
land-use allocation (AIS-MOLA). Initially, based on each random solution, the mutation strategy of
random exchange and the selection strategy of compromise programming [29] were used to
generate and preserve new solutions. After cloning some non-dominated solutions, new solutions
were constructed using the crossover strategy. By such iterative calculations, the Pareto front can be
obtained. Experiments revealed that AIS-MOLA achieved better results in both simulated and
practical land-use allocation than PSA [3]. However, because only completely random strategies
were used in the phase of new solution construction and no auxiliary knowledge was imported to
aid in navigating the spatial search to areas where global optima were located, we believe that there

Figure 1. Pareto solutions.

Recently, studies on MOLA have applied some Pareto-based heuristic algorithms, including
evolutionary algorithms [7,18,26,27], simulated annealing (SA) [3] and the artificial immune system
(AIS) [28]. Duh and Brown [3] developed a knowledge-informed Pareto simulated annealing approach
(PSA) to solve the MOLA problem. Based on an initial solution set that includes the best solution of
each single objective function and some random feasible solutions, PSA can obtain a Pareto front by
iteratively executing the following steps: (1) new solution construction, (2) dominance assessments,
(3) Pareto solution set updating, (4) objective-weight calculations and (5) new solution acceptance
judgments. Meanwhile, PSA defined two knowledge-informed rules—the compactness rule and the
suitability rule—to monitor the construction of new solutions. However, these rules were used only
on the solutions with the largest weight values in any objective direction, which resulted in limited
improvement of the qualities of all new solutions.

Huang et al. [28] proposed an improved artificial immune system method for multi-objective
land-use allocation (AIS-MOLA). Initially, based on each random solution, the mutation strategy of
random exchange and the selection strategy of compromise programming [29] were used to generate
and preserve new solutions. After cloning some non-dominated solutions, new solutions were
constructed using the crossover strategy. By such iterative calculations, the Pareto front can be obtained.
Experiments revealed that AIS-MOLA achieved better results in both simulated and practical land-use
allocation than PSA [3]. However, because only completely random strategies were used in the phase
of new solution construction and no auxiliary knowledge was imported to aid in navigating the spatial

Optimizing Satisficing

Navigating the solution space

14

1.11. Why Are Most Designs Ineffective? 13

x

Consideration
space

Proposal
space

x

Bad!

x

x

xx

o

o o

x o
o

Good!

Space of possible solutions

Known
space

Selected
solution

x

Good solution
OK solution
Poor Solution

x
o

Space of possible solutions

o

x

o

o

o

o

o

o

o

o

Figure 1.5. A search space metaphor for vis design.

consideration space, which contains the solutions that you actively
consider. This set is necessarily smaller than the known space,
because you can’t consider what you don’t know. An even smaller
set is the proposal space of possibilities that you investigate in
detail. Finally, one of these becomes the selected solution.

Figure 1.5 contrasts a good strategy on the left, where the known
and consideration spaces are large, with a bad strategy on the
right, where these spaces are small. The problem of a small con-
sideration space is the higher probability of only considering ok
or poor solutions and missing a good one. A fundamental princi-
ple of design is to consider multiple alternatives and then choose
the best, rather than to immediately fixate on one solution without
considering any alternatives. One way to ensure that more than
one possibility is considered is to explicitly generate multiple ideas
in parallel. This book is intended to help you, the designer, en-
tertain a broad consideration space by systematically considering
many alternatives and to help you rule out some parts of the space
by noting when there are mismatches of possibilities with human
capabilities or the intended task.

As with all design problems, vis design cannot be easily handled
as a simple process of optimization because trade-offs abound. A
design that does well by one measure will rate poorly on another.
The characterization of trade-offs in the vis design space is a very
open problem at the frontier of vis research. This book provides
several guidelines and suggested processes, based on my synthesis
of what is currently known, but it contains few absolute truths.

! Chapter 4 introduces a
model for thinking about
the design process at four
different levels; the model
is intended to guide your
thinking through these
trade-offs in a systematic
way.

Diagrams: Munzner (2015) Visualization analysis and design. CRC Press

https://www.routledge.com/Visualization-Analysis-and-Design/Munzner/p/book/9781466508910

Design process is iterative

15

222 The Design of Everyday Things

1. Observation
2. Idea generation (ideation)
3. Prototyping
4. Testing

These four activities are iterated;
that is, they are repeated over and
over, with each cycle yielding more
insights and getting closer to the de-
sired solution. Now let us examine
each activity separately.

OBSERVATION

The initial research to understand
the nature of the problem itself is
part of the discipline of design re-
search. Note that this is research
about the customer and the people

who will use the products under consideration. It is not the kind
of research that scientists do in their laboratories, trying to find
new laws of nature. The design researcher will go to the potential
customers, observing their activities, attempting to understand
their interests, motives, and true needs. The problem definition
for the product design will come from this deep understanding of
the goals the people are trying to accomplish and the impediments
they experience. One of its most critical techniques is to observe the
would-be customers in their natural environment, in their normal
lives, wherever the product or service being designed will actually
be used. Watch them in their homes, schools, and offices. Watch
them commute, at parties, at mealtime, and with friends at the local
bar. Follow them into the shower if necessary, because it is essential
to understand the real situations that they encounter, not some pure
isolated experience. This technique is called applied ethnography, a
method adapted from the field of anthropology. Applied ethnog-
raphy differs from the slower, more methodical, research-oriented
practice of academic anthropologists because the goals are different.

FIGURE 6.2 . The Iterative Cycle
of Human-Centered Design. Make
observations on the intended tar-
get population, generate ideas,
produce prototypes and test them.
Repeat until satisfied. This is often
called the spiral method (rather than
the circle depicted here), to empha-
size that each iteration through the
stages makes progress.

9780465050659-text.indd 2229780465050659-text.indd 222 8/19/13 5:22 PM8/19/13 5:22 PM

Don Norman (2013) The Design of Everyday Things. Basic Books.

• Do you like the system?
• System Usability Scale (SUS)

Q: Do you like this system?

16

Problems with this type of test:

Hawthorne effect: Participants behave differently because they are

aware that their behaviors are measured

Social-desirability bias: People tend answer questions in a manner that

will be viewed favorably by others (= you the researchers!)

17

System Usability Scale

© Digital Equipment Corporation, 1986.

Strongly Strongly
disagree agree

1. I think that I would like to
use this system frequently

2. I found the system unnecessarily
complex

3. I thought the system was easy
to use

4. I think that I would need the
support of a technical person to
be able to use this system

5. I found the various functions in
this system were well integrated

6. I thought there was too much
inconsistency in this system

7. I would imagine that most people
would learn to use this system
very quickly

8. I found the system very
cumbersome to use

9. I felt very confident using the
system

10. I needed to learn a lot of
things before I could get going
with this system

Total score = 22

SUS Score = 22 *22.5 = 55

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

4

1

1

4

1

2

1

1

4

3

Usability study is not publishable

18

Usable ≠ useful

Visionary ideas shown through

prototypes could impact the way

people think about the problem or

the solution

But the prototypes themselves

may not be practical to deploy

Usability Evaluation Considered Harmful
(Some of the Time)

Saul Greenberg
Department of Computer Science

University of Calgary
Calgary, Alberta, T2N 1N4, Canada

saul.greenberg@ucalgary.ca

Bill Buxton
Principle Researcher
Microsoft Research

Redmond, WA, USA
bibuxton@microsoft.com

ABSTRACT
Current practice in Human Computer Interaction as
encouraged by educational institutes, academic review
processes, and institutions with usability groups advocate
usability evaluation as a critical part of every design
process. This is for good reason: usability evaluation has a
significant role to play when conditions warrant it. Yet
evaluation can be ineffective and even harmful if naively
done ‘by rule’ rather than ‘by thought’. If done during early
stage design, it can mute creative ideas that do not conform
to current interface norms. If done to test radical
innovations, the many interface issues that would likely
arise from an immature technology can quash what could
have been an inspired vision. If done to validate an
academic prototype, it may incorrectly suggest a design’s
scientific worthiness rather than offer a meaningful critique
of how it would be adopted and used in everyday practice.
If done without regard to how cultures adopt technology
over time, then today's reluctant reactions by users will
forestall tomorrow's eager acceptance. The choice of
evaluation methodology – if any – must arise from and be
appropriate for the actual problem or research question
under consideration.

Author Keywords
Usability testing, interface critiques, teaching usability.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces (Evaluation/Methodology).

In 1968, Dijkstra wrote ‘Go To Statement Considered
Harmful’, a critique of existing programming practices that
eventually led the programming community to adopt
structured programming [8]. Since then, titles that include
the phrase ‘considered harmful’ signal a critical essay that
advocates change. This article is written in that vein.

INTRODUCTION
Usability evaluation is one of the major cornerstones of
user interface design. This is for good reason. As Dix et al.,
remind us, such evaluation helps us “assess our designs and
test our systems to ensure that they actually behave as we
expect and meet the requirements of the user” [7]. This is
typically done by using an evaluation method to measure or
predict how effective, efficient and/or satisfied people
would be when using the interface to perform one or more
tasks. As commonly practiced, these usability evaluation
methods range from laboratory-based user observations,
controlled user studies, and/or inspection techniques
[7,22,1]. The scope of this paper concerns these methods.

The purpose behind usability evaluation, regardless of the
actual method, can vary considerably in different contexts.
Within product groups, practitioners typically evaluate
products under development for ‘usability bugs’, where
developers are expected to correct the significant problems
found (i.e., iterative development). Usability evaluation can
also form part of an acceptance test, where human
performance while using the system is measured
quantitatively to see if it falls within an acceptable criteria
(e.g., time to complete a task, error rate, relative
satisfaction). Or if the team is considering purchasing one
of two competing products, usability evaluation can
determine which is better at certain things.

Within HCI research and academia, researchers employ
usability evaluation to validate novel design ideas and
systems, usually by showing that human performance or
work practices are somehow improved when compared to
some baseline set of metrics (e.g., other competing ideas),
or that people can achieve a stated goal when using this
system (e.g., performance measures, task completions), or
that their processes and outcomes improve.

Clearly, usability evaluation is valuable for many situations,
as it often helps validate both research ideas and products at
varying stages in its lifecycle. Indeed, we (the authors) have
advocated and practiced usability evaluation in both
research and academia for many decades. We believe that
the community should continue to evaluate usability for
many – but not all – interface development situations. What
we will argue is that there are some situations where

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00

CHI 2008 Proceedings · Usability Evaluation Considered Harmful? April 5-10, 2008 · Florence, Italy

111

Greenberg, S., & Buxton, B. (2008, April). Usability evaluation considered harmful (some of the time). In Proceedings of the SIGCHI conference on Human factors in
computing systems (pp. 111-120).

https://doi.org/10.1145/1357054.1357074

Mother of all demos

19

Demonstrate the NLS system with mouse input, hyper text, video

conferencing, and collaborative real-time editor

Full video and description: thedemo.org

(Douglas Engelbart 1968)

http://thedemo.org

20

(1980s). Figure 3 offers examples
of when research started and when
commercial products began to ship.

The gap between early research
(glint stage) and early commercial
activity (embryonic stage) is often
several decades, because the idea
starts as something so impractical
and challenging that no one is
thinking about productization.
People are mostly trying to figure
out if it is possible at all, or at least
interesting to study. Academics
have the unique luxury of setting
practicality aside to probe the
distant future (myself included,
with research like on-skin projected
interfaces [5,6], unlikely to be
feasible anytime soon, if ever!). This
is a mentality (and in many ways a
method) that allows HCI researchers
to be way ahead of the game, before
there is any thought, let alone
hope, of commercialization—the
latter being a prerequisite for
most businesses. This significant
separation in time led Bill Buxton to
assert that “any technology that is
going to have significant impact in
the next 10 years is at least 10 years
old.” This long period of incubation
is what Buxton describes as a “long
nose of innovation” [7], which I’ll
f it under a new extended S-curve in
Figure 4.

This 20-plus-year gap can be
very deceptive. Attendees at venues
like ACM CHI often lament that
no HCI research ever goes into
product. I would argue that HCI is
at the vanguard of innovation and
has repeatedly inf luenced industry.
But this is the not the direct path
we all wish existed from paper to
product. Instead, HCI research has
much greater impact in identifying
opportunities in the first place,
establishing the science and
methods, building a shared vision,
and developing a pipeline of human
talent.

For this reason, few people can
confidently say, “That feature was
based on my paper!” Similarly, there
are extraordinarily few startups that
have come out of CHI (including
technical HCI communities like
UIST and UBICOMP). Instead,
the collective weight of an area’s
research propels the idea out of
academia and into the collective
conscience, both industry and the

public imagination. This is often
when we start to see embryonic
commercial activity; non-
researchers are convinced by the
idea, and there is light at the end of
the profitability tunnel.

For most of this embryonic
period, things are good. HCI
innovators are consulted and
hired to help push the idea toward
commercialization, leveraging their
deep expertise from potentially
decades of work in the domain.
This is why industrial research labs
popped up at places like Apple and
Microsoft in the 1980s and 90s, and
Oculus and Snap in this decade. In
many respects, this is the golden
era for HCI innovators, where there
are finally resources to tackle big,
interesting problems, and there is

the real potential for research to
escape into the real world. This
was Xerox PARC in the 1970s
working on the Alto system, which
defined the desktop graphical user
interface experience, and Apple
in the 2000s working on the first
iPhone, which defined multitouch
mobile computing. Both were built
on glint-stage research from decades
earlier—Doug Engelbart’s oN-Line
System (demonstrating windows, the
mouse, word processing, hypertext,
and other GUI mainstays) was
developed in the 1960s [8], and
Steve Jobs visited multitouch
researchers for demos as far back as
1985 [9].

As money and resources pour in,
teams grow, and ideas balloon into
actual products, the intellectual

1960 1970 1980 1990 2000 2010

Multitouch

1960 1970 1980 1990 2000 2010

1960 1970 1980 1990 2000 2010

1960 1970 1980 1990 2000 2010

1960 1970 1980 1990 2000 2010

1960 1970 1980 1990 2000 2010

Graphical User Interfaces

1960 1970 1980 1990 2000 2010

Hypertext / World Wide Web

1960 1970 1980 1990 2000 2010

Computer Mouse

Touchscreens

Voice Interfaces

1960 1970 1980 1990 2000 2010

Tablet Computers

Virtual Reality

1960 1970 1980 1990 2000 2010

Gesture Recognition

“Bulb Computing”

1960 1970 1980 1990 2000 2010

Projected On-Skin Computing

Academic and Industrial Research

Commercial Products

1960 1970 1980 1990 2000 2010

Multitouch

1960 1970 1980 1990 2000 2010

1960 1970 1980 1990 2000 2010

1960 1970 1980 1990 2000 2010

1960 1970 1980 1990 2000 2010

1960 1970 1980 1990 2000 2010

Graphical User Interfaces

1960 1970 1980 1990 2000 2010

Hypertext / World Wide Web

1960 1970 1980 1990 2000 2010

Computer Mouse

Touchscreens

Voice Interfaces

1960 1970 1980 1990 2000 2010

Tablet Computers

Virtual Reality

1960 1970 1980 1990 2000 2010

Gesture Recognition

“Bulb Computing”

1960 1970 1980 1990 2000 2010

Projected On-Skin Computing

Academic and Industrial Research

Commercial Products

Figure 3. Research and commercial development timelines of various HCI subjects, adapted and
extended from [4].

I N T E R A C T I O N S . A C M .O R G N O V E M B E R–D E C E M B E R 2 018 I N T E R A C T I O N S 2 9

Harrison, C. (2018). The HCI innovator's dilemma. Interactions, 25(6), 26-33.

http://dx.doi.org/10.1145/3274564

21 Harrison, C. (2018). The HCI innovator's dilemma. Interactions, 25(6), 26-33.

research having been done decades
prior and f loating in the ether since.
As Buxton wryly noted, “There
are no new ideas. Just refinements
of old ones, iterating until some
amorphous perfect storm wave
sweeps them to overnight success!”

The growth phase is when a
dominant design emerges [2] and
products begin to ossify. In my
view, this transition from growth to
maturity is the most painful time
for HCI innovators, as it feels like
industry has reached escape velocity
and no longer wants or needs outside
ideas. What’s worse is that new and
good ideas are often rejected, as
products have to satisfy an existing
customer base. This is the HCI
innovator’s Trough of Disillusion
(Figure 5): A product has reached
peak success and inf luence, yet we
have little inf luence and get little
credit. It isn’t until a product ages
that the spigot of new ideas opens
slightly, when companies have
exhausted in-house ideas and begin

impact of HCI research rapidly falls
away (Figure 5). We’ve entered
the growth phase. There’s now a
critical mass of expertise, and the
community commercializing the
idea dwarfs the original research
community, some of whom may
have even moved on to different
research areas in the intervening
decades. The lineage of ideas grows
obscure, with most of the good ideas
from the literature now on people’s
lips, origin unknown, fostering the
belief that everything was invented
in-house. As the commercial stakes
mount, there is also a trend to
firewall ideas from escaping and
entering organizations, creating
intellectual echo chambers. Steve
Jobs proclaimed (and may have even
believed), “We have invented a new
technology called ‘multitouch’ which
is phenomenal.” That said, I do
suspect that many good HCI ideas
are reinvented at this stage. I also
suspect this reinvention wouldn’t
happen in a vacuum, without that

We’re faced with a dilemma
as a community: When ideas have
real users and real value, our
ability to launch HCI innovations
tends to fall on deaf ears.

DO NOT PRINT THIS INFORMATION ACM INTERACTIONS NOVEMBER/DECEMBER 2018 19-057

A look at the
revolution in game
live streaming and

esports broadcasting

“Interest in online streaming

platforms, especially for games

and Twitch, is at its height. This

timely and urgently needed

book successfully conveys the

technical, legal, emotional, and

social complexities of what people

are doing in Twitch. Providing a

nuanced and close-to-the-ground

analysis, Watch Me Play will be

the go-to work for learning

about this gaming experience.”

—Thomas M. Malaby,

author of Making Virtual Worlds:

Linden Lab and Second Life

Paper $27.95
Cloth $80.00

Social icon

Rounded square
Only use blue and/or white.

For more details check out our
Brand Guidelines.

EMBRYONIC
• Prototypes
• Iterative research
• Community building

GLINT
• Proof of concepts
• Science & methods
• Vision

GROWTH
• Commercial feasibility
• Product launch
• Proliferation of features

MATURITY
• Dominant design
• Maintaining markets
• Incremental improvement

AGING
• Commoditization
• Consolidation
• Possible death

M
ar

ke
t S

iz
e

Buxton’s Long Nose of Innovation
(~20 years)

Time

Figure 4. Extended Technology Lifecycle S-Curve, integrating a new “glint” stage and Buxton’s
long nose of innovation.

I N T E R A C T I O N S . A C M .O R G3 0 I N T E R A C T I O N S N O V E M B E R–D E C E M B E R 2 018

COVER STORY

http://dx.doi.org/10.1145/3274564

22

research having been done decades
prior and f loating in the ether since.
As Buxton wryly noted, “There
are no new ideas. Just refinements
of old ones, iterating until some
amorphous perfect storm wave
sweeps them to overnight success!”

The growth phase is when a
dominant design emerges [2] and
products begin to ossify. In my
view, this transition from growth to
maturity is the most painful time
for HCI innovators, as it feels like
industry has reached escape velocity
and no longer wants or needs outside
ideas. What’s worse is that new and
good ideas are often rejected, as
products have to satisfy an existing
customer base. This is the HCI
innovator’s Trough of Disillusion
(Figure 5): A product has reached
peak success and inf luence, yet we
have little inf luence and get little
credit. It isn’t until a product ages
that the spigot of new ideas opens
slightly, when companies have
exhausted in-house ideas and begin

impact of HCI research rapidly falls
away (Figure 5). We’ve entered
the growth phase. There’s now a
critical mass of expertise, and the
community commercializing the
idea dwarfs the original research
community, some of whom may
have even moved on to different
research areas in the intervening
decades. The lineage of ideas grows
obscure, with most of the good ideas
from the literature now on people’s
lips, origin unknown, fostering the
belief that everything was invented
in-house. As the commercial stakes
mount, there is also a trend to
firewall ideas from escaping and
entering organizations, creating
intellectual echo chambers. Steve
Jobs proclaimed (and may have even
believed), “We have invented a new
technology called ‘multitouch’ which
is phenomenal.” That said, I do
suspect that many good HCI ideas
are reinvented at this stage. I also
suspect this reinvention wouldn’t
happen in a vacuum, without that

We’re faced with a dilemma
as a community: When ideas have
real users and real value, our
ability to launch HCI innovations
tends to fall on deaf ears.

DO NOT PRINT THIS INFORMATION ACM INTERACTIONS NOVEMBER/DECEMBER 2018 19-057

A look at the
revolution in game
live streaming and

esports broadcasting

“Interest in online streaming

platforms, especially for games

and Twitch, is at its height. This

timely and urgently needed

book successfully conveys the

technical, legal, emotional, and

social complexities of what people

are doing in Twitch. Providing a

nuanced and close-to-the-ground

analysis, Watch Me Play will be

the go-to work for learning

about this gaming experience.”

—Thomas M. Malaby,

author of Making Virtual Worlds:

Linden Lab and Second Life

Paper $27.95
Cloth $80.00

Social icon

Rounded square
Only use blue and/or white.

For more details check out our
Brand Guidelines.

EMBRYONIC
• Prototypes
• Iterative research
• Community building

GLINT
• Proof of concepts
• Science & methods
• Vision

GROWTH
• Commercial feasibility
• Product launch
• Proliferation of features

MATURITY
• Dominant design
• Maintaining markets
• Incremental improvement

AGING
• Commoditization
• Consolidation
• Possible death

M
ar

ke
t S

iz
e

Buxton’s Long Nose of Innovation
(~20 years)

Time

Figure 4. Extended Technology Lifecycle S-Curve, integrating a new “glint” stage and Buxton’s
long nose of innovation.

I N T E R A C T I O N S . A C M .O R G3 0 I N T E R A C T I O N S N O V E M B E R–D E C E M B E R 2 018

COVER STORY

to once again welcome outside ones
to reinvigorate tired products.

Returning to my earlier examples,
we saw this effect in desktop GUIs,
which, after a period of intense
innovation and market growth in
the 1980s and 90s, largely cemented
around the same concepts: a
desktop, overlapping windows,
icons, hierarchical f ile systems, a
cursor, and so on. It does not matter
if you run MacOS, Windows, or
some f lavor of Linux—they are all
basically the same thing in different
skins. Likewise with smartphone
interfaces: grids of app icons, a
shelf with favorites, full-screen
apps, notification dropdown,
app-centered file organization. Of
course, this hasn’t stopped the HCI
community (including me) from
cranking out hundreds of papers a
year on refinements and extensions
to desktop and mobile GUIs. This
is f ine, and even good research, but
we should be honest with ourselves
about the potential for impact at this
point in these categories’ lifecycles.

When companies have tried to
innovate mature user experiences,
it tends to go poorly. Perhaps the
canonical example of a mature
product with a large user base is
Windows. Microsoft launched a
dramatically redesigned interface
with Windows 8, which led to so
much customer consternation that
Microsoft had to regress the design
in subsequent versions to a more
classic desktop experience. Just this
year, Snapchat, with its hundreds of
millions of users, had to roll back a
substantive redesign after its user
base ignited. While you may have
strong opinions on these interfaces
in hindsight, I can assure you that
each was designed and vetted by
hundreds of experts before release.
No doubt these designs were good
in some ways, but they were also
different, and ordinary customers
(reminder: you are not like the user)
don’t like different once they’ve
integrated a product into their
lives and businesses. Thus, change
is hard, and why the HCI research
community is right to lament its
inability to get HCI innovations into
products. It’s true: If it can be called
a product, it is almost certainly too
late. The window of opportunity is
before it is a product, and probably

before most people think it can be a
product.

Thus, we’re faced with a dilemma
as a community: When ideas have
real users and real value, our ability
to launch HCI innovations tends
to fall on deaf ears. I do not mean
to say it is impossible, just very
challenging. Even if you are well
positioned in industry, I’m sure
you would agree that bringing new
features, let alone new products, to
market is a huge battle. On the f lip
side, when HCI innovators invest
efforts early, before products and
markets exist, the work can feel
speculative and decoupled from
real-world problems. I’ve certainly
felt this in my own research—why
again do people want an unwieldy
computer strapped to their shoulder
projecting onto their arms when
a smartphone is so much more
practical?

THE DILEMMA ZONE
The Technology Lifecycle S-Curve

is limited in that it considers only
one generation of innovation,
but technology and society are
constantly reinventing themselves,
so the progress of technology and
their markets is very much a series
of S-curves. Innovation enables
new products while killing old
ones. Think Blockbuster to Netf lix,
CDs to streaming, or taxis to ride
sharing. It’s extremely difficult
to keep a large, mature user base
happy while also rapidly evolving
a product. Instead, companies
with mature products tend to
focus on sustaining innovation—
improvements that make their
existing products better and their
customers happy. Newcomers, with
fewer expectations and smaller user
bases, can disruptively innovate.
This is the basic premise of Clayton
Christensen’s Innovator’s Dilemma,
articulated in the eponymous 1997
book [10]. In between two S-curves
is a dilemma zone (Figure 6, left).
If the disruptive innovation is led

EMBRYONICGLINT GROWTH MATURITY AGING

Po
te

nt
ia

l f
or

 H
CI

In
te

lle
ct

ua
l I

m
pa

ct

Time

Butte of Influence

Trough of Disillusion

Figure 5. HCI Intellectual Impact Curve.

Innovator’s Dilemma HCI Innovator’s Dilemma

Opportunity
Zone

Opportunity
Zone

Dilemma
Zone

Dilemma
Zone

M
ar

ke
t S

iz
e

M
ar

ke
t S

iz
e

Time

[Christensen 1997]

Time

Figure 6. Christensen’s Innovator’s Dilemma [10] versus the HCI Innovator’s Dilemma.

I N T E R A C T I O N S . A C M .O R G N O V E M B E R–D E C E M B E R 2 018 I N T E R A C T I O N S 31

Harrison, C. (2018). The HCI innovator's dilemma. Interactions, 25(6), 26-33.

http://dx.doi.org/10.1145/3274564

Many ways to validate constructive research

23

Ways to validate research in general

24

‘corroborated’, ‘well-confirmed’ or otherwise justifiable
within the framework of contemporary epistemology.

With this definition, the benefit of problem-solving is that it
allows covering a wider scope of research than previous ac-
counts, which have been restricted to certain disciplines,
topics, or approaches (e.g., research-through-design [53],
interaction criticism [2], usability science [15], or interac-
tion science [21]). However, because Laudan developed his
view with natural and social sciences in mind, he missed
design and engineering contributions. Extending Laudan’s
typology to propose that research problems in HCI include
not only empirical and conceptual but also constructive
problems, we present the first typology developed to en-
compass most recognised research problems in HCI. It is
now possible to describe research contributions regardless
of the background traditions, paradigms, or methods. The
seemingly multi- or, rather, hyper-disciplinary field is—in
the end—about solving three types of problem. This reduc-
es the number of dimensions dramatically when one is talk-
ing about HCI.

Having built the conceptual foundation, we return to answer
four fundamental questions: 1) What is HCI research, 2)
what is good HCI research, 3) are we doing a good job as a
field, and 4) could we do an even better job?

We aim to show through these discussions that Laudan's
problem-solving view is not just ‘solutionism’. It offers a
useful, timeless, and actionable non-disciplinary stance to
HCI. Instead of asking whether research subscribes to the
‘right’ approach, a system is ‘novel’, or a theory is ‘true’,
one asks how it advances our ability to solve important
problems relevant to human use of computers. Are we ad-
dressing the right problems? Are we solving them well?
The view helps us contribute to some longstanding debates
about HCI. Moreover, we show that the view is generative.
We provide ideas on how to apply it as a thinking tool.
Problem-solving capacity can be analysed for individual
papers or even whole sub-topics and the field at large. It al-

so works as a springboard for generating ideas to improve
research agendas.

We conclude on a positive note by arguing that HCI is nei-
ther unscientific nor non-scientific (as some have claimed
[40]) or in deep crisis [25]. Such views do not recognise the
kinds of contributions being made. Instead, on many
counts, HCI has improved problem-solving capacity in hu-
man use of computing remarkably and continues to do so.
However, as we show, these contributions tend to focus on
empirical and constructive problem types. In a contrast to
calls for HCI to be more scientific [21], interdisciplinary
[3], hard [36], soft [9], or rigorous [40], the systematic
weakness of HCI is, in fact, our inability to produce con-
ceptual contributions (theories, methods, concepts, and
principles) that link empirical and constructive research.

THREE TYPES OF RESEARCH PROBLEM IN HCI
Our first point is that the key to understanding HCI as prob-
lem-solving is the recognition that its research efforts clus-
ter around a few recurring problem types. We effectively
‘collapse’ the (apparent) multiplicity of research efforts un-
der a few problem types. This not only simplifies HCI but
also transcends some biasing presumptions arising from
methodology, theory, or discipline. One can now see simi-
larities and differences between, say, an observational study
of a novel technology and a rigorous laboratory experiment,
without being bound by their traditions.

In this section, we 1) introduce Laudan’s notion of research
problem briefly, 2) extend his typology to cover engineer-
ing and design contributions to HCI, and 3) argue that con-
tributions in HCI can be classified via this typology.

Laudan originally distinguished only two types of research
problem—empirical and conceptual. These are defined in
terms of absence or inabilities to understand or achieve
some ends. As we argue below, the two types are applicable
also to HCI. However, to not let design ‘off the hook’, HCI
should cover engineering and design contributions. This as-
pect is clear in almost all definitions of HCI as a field, in-

Figure 1. This paper analyses HCI research as problem-solving. Scientific progress in HCI is defined as improvements in our

ability to solve important problems related to human use of computing. Firstly, a subject of enquiry is defined and its im-
provement potential analysed. Then, a research problem is formulated. The outcome of the research (i.e., the solution) is evalu-

ated for its contribution to problem-solving capacity defined in terms of five criteria.

Our strong recommendation is to put more effort into inte-
grative concepts, theories, methods, and models that can
link empirical and constructive solutions. This, we believe,
is required for the ‘motor themes’ to emerge that are called
upon to fill the ‘big hole’ in HCI research [25]. Without
such ‘glue’, our research continues to have lower prob-
lem-solving capacity than desired. Empirical research
should be done in such a way that its hypotheses inform de-
sign, and designs should embody and be driven by empiri-
cally validated hypotheses. However, while it is fruitful to
strive for integrative types of knowledge, it is healthy to
remember that work on constructive problems can advance
also without any hypothesis. And, vice versa, there are nu-
merous examples of theories that lack direct relevance.

Improvement of Writing Culture
Our writing culture does not support the problem-solving
view. The impression from the Best Paper sample was that
many papers could do a better job in describing the problem
they are tackling. This is essential from the problem-solving
angle. Some papers make explicit only the solution (e.g., a
new technology) or approach (e.g., what they did), neither
of which is about the research problem. These papers only
rarely explain how the result would improve our prob-
lem-solving capacity and instead just use language such as
‘we know little about’, ‘significant gap in knowledge’, and
‘no researchers have developed systems that’.

Systematic Improvement of Problem-Solving Capacities
Problem-solving is not merely a description. It offers a
‘thinking tool’ for refining research ideas and generating
better ones. This sets it apart from some previous attempts
to state the qualities desired in HCI research, which have
often been normative or silent with regard to idea-generation.

Firstly, to improve an individual research effort, the five
criteria for problem-solving capacity can be used ‘prescrip-
tively’ to generate ideas for how to improve. In Table 1, we
have listed heuristics to assess and nurture problem-solving
capacity for the problem being considered. There is a row
for each property of problem-solving capacity, and the col-
umns present related assessment criteria and development
strategies. These refer to the definitions and criteria given
above. The table can be applied by assessing the solution
obtained (if the research has ended) or desired (for planned
research) and considering whether it could be improved fur-

ther. The list is meant not to be complete but to show that
metrics and constructive ideas can be generated for each of
the aspects. The authors of this paper have used these crite-
ria internally to develop and refine research ideas.

Secondly, problem-solving capacity can be applied to whole
sub-topics also, to assess them and see opportunities to im-
prove. Let us discuss Fitts’ law as an example. It is one of
the few thoroughly studied models in HCI and addresses a
pervasive phenomenon in interaction. Fitts’ law is also rea-
sonably transferable: it has been found to apply across a
wide variety of devices and contexts (even underwater)
[45]. Thus, from the perspectives of significance and trans-
fer, Fitts’ law has increased our problem-solving capacity.
However, it can be criticised from the angles of effective-
ness, efficiency, and confidence. First, Fitts’ law does not
completely solve the problem of aimed-movement perfor-
mance, because it relies on heavy aggregation of data at the
task level. It dismisses cognitive factors (e.g., performance
objective) and dynamics of motion (e.g., trajectory, variabil-
ity, and force used). It is not an efficient solution either, be-
cause its free parameters must be calibrated for each task
and context. Also, these parameters are fragile. One can go
so far as to claim that these shortcomings limit Fitts’ law to
interpolation within a set of empirical data and it fails to be
a truly predictive model. To advance problem-solving ca-
pacity in this line of research, the effectiveness and effi-
ciency of the modelling approach should be improved.

Thirdly, although the problem-solving view does not en-
compass a notion of pseudo-science, it can steer the re-
searcher to avoid pathological practices. These are defined
by Irving Languir as wishful thinking, fraud, exaggeration
of effects, and ad hoc excuses. The problem-solving view
may aid in avoiding these via three means: 1) by asking re-
searchers to explicate their research problems, as opposed
to just presenting results; 2) by providing criteria for out-
comes that entail going beyond ‘point designs’, ‘novelty’,
and ‘existence proofs’; and 3) by driving researchers to pre-
sent more solid evidence and thereby increase confidence.

Rethinking What Constitutes ‘Good’ Research
HCI has tended to develop and adopt superficial criteria for
evaluating its research and for its goal-setting. Some of the-
se may have been outright damaging. While HCI has been
called an interdisciplinary or trans-disciplinary field, a par-

Criterion Evaluation Criteria Heuristics for Refining Ideas
Significance Number of stakeholders involved; importance of the im-

provement for stakeholders; costs incurred when the im-
provement is not achieved

Target a different stakeholder group or a larger number of stake-
holders; aim at a greater improvement over the present baseline;
report on direct comparisons against baseline solutions

Effectiveness Capture the essential aspects of the problem; match be-
tween evaluation metrics and priorities

Use multiple evaluation criteria and richer evaluation contexts; val-
idate evaluation criteria; address unnoticed real-world difficulties

Efficiency How much effort or resources it takes to create or deploy
the solution; scalability; size

Develop tools for practitioners; share datasets and code; reduce
price/cost

Transfer Number of users, tasks, and contexts for which the solution
can be applied; qualitatively new contexts wherein the solu-
tion can be applied

Identify and target new user groups, contexts, or tasks; demon-
strate broad-based generalisability

Confidence Empirical validity; reliability; replicability; reproducibility; ro-
bustness

Replicate the result in different contexts; report on different met-
rics for judging validity and reliability; allow reanalysis

Table 1. Some heuristics for assessing and contributing to evolution of problem-solving capacity in a research project.

cluding that of the 1992 ACM Curriculum [18]. We there-
fore propose adding a constructive problem type. An over-
view is given in Figure 2. This typology is orthogonal to the
well-known Pasteur's Quadrant, which constitutes an at-
tempt to bridge the gap between applied and basic research
by suggesting ‘use-inspired basic research’ as an acceptable
type. In our view, in HCI, all problems are (somehow)
use-inspired and the quadrant offers little insight.

Empirical Problems
The landscape is replete with empirical problems, across all
HCI venues, from studies of how people use mouseover to
embarrassing experiences with technology and effective
ways of crowdsourcing contributions. Nevertheless, this is
perhaps the most straightforward type to define:

Definition: Empirical research is aimed at creating or
elaborating descriptions of real-world phenomena related
to human use of computing.

Laudan cites three characteristic subtypes:

1. unknown phenomena
2. unknown factors
3. unknown effects

Qualitative research, ethnography in particular, is an ap-
proach often followed to shed light on novel phenomena.
An example is the 1996 TOCHI article ‘A Field Study of
Exploratory Learning Strategies’ [41], which reported ob-
servations of how users explore software. The constituent
factors of phenomena, however, can be exposed only after
the ‘carrier’, the phenomenon, has been identified. Consid-
er, for example, the paper ‘Distance Matters’ [37]: it cata-
logues phenomena and factors that affect mediated human-
to-human communication. Finally, after identifying factors,
one can measure and quantify their effects on something of
interest. A common example is evaluative studies wherein
statistical inference is used to quantify the most potent ef-
fects. One could cite fisheye menus here—though there is a
great deal of knowledge about the technique and how to
implement it, a study that evaluated its usability found no
benefits of this technique [20].

Conceptual Problems
Conceptual problems are non-empirical; they involve issues
in theory development in the most general sense. They are
also what Laudan calls second-order problems: their sub-
stance does not pertain to the world directly, unlike empiri-

cal problems. Conceptual problems might involve difficul-
ties in explaining empirical phenomena, nagging issues in
models of interaction, or seeming conflicts between certain
principles of design. Fitts’ law [45] is perhaps the most
well-known example. It is a statistical model connecting
aimed-movement performance (speed and accuracy) to two
properties of a user interface that designers can affect: dis-
tance to and width of selection areas such as buttons. The
research problem it solves is how performance in aimed
movement is connected to task demands imposed by a UI.

We offer the following, more general definition:

Definition: Work on a conceptual research problem is
aimed at explaining previously unconnected phenomena
occurring in interaction.

Responses to this type of problem include theories, con-
cepts, methods, principles, and models. Furthermore, Lau-
dan distinguishes among three characteristic subtypes:

1. implausibility
2. inconsistency
3. incompatibility

We discuss each subtype with well-known examples from
HCI literature. Implausibility means that the phenomenon is
unreasonable, improbable, or lacking an explanation. Con-
sider the 1985 paper in HCI Journal entitled ‘Direct Ma-
nipulation Interfaces’ [22], whose authors sought to explain
why GUIs felt more direct and command-language inter-
faces felt more indirect. Inconsistency means that a position
is inconsistent with data, with itself, or with some other po-
sition. For example, empirical research on privacy in HCI
led to an account of privacy as a reciprocal process among
two or more parties to communication [11]. This observa-
tion countered the then-more-common view that privacy is
a state or property attributable to a technological system.
Finally, incompatibility means that two positions have as-
sumptions that cannot be reconciled. The debate [52] about
using throughput (TP) as a metric for pointing performance
falls into this category. Two scholars proposed two metrics
that entailed partially incompatible interpretations of the
concept and guidance on how to analyse data.

Constructive Problems
We extend the typology of problems with a third type:

Definition: Constructive research is aimed at producing
understanding about the construction of an interactive ar-
tefact for some purpose in human use of computing.

We put emphasis on understanding: the objective is not the
construction itself but the ideas or principles it manifests.
This problem type covers some of the sub-areas of HCI
showing the most vitality at conferences, including interac-
tive systems, interactive applications, interface and sensor
technology, interaction techniques, input devices, UI design,
interaction design, and concept design. Importantly, this
problem type cuts across design and engineering, both exten-
sive topics. We further distinguish three subtypes:

Figure 2. The problem-solving view ‘collapses’ research problems

in HCI into three main categories, each with three subtypes.

Oulasvirta, A., & Hornbæk, K. (2016, May). HCI research as problem-solving. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 4956-4967).

https://doi.org/10.1145/2858036.2858283

Evaluation strategies

25

ing systems research: “simple metrics can produce simplistic
progress that is not necessarily meaningful.” The central
question is thus: what is an evaluation? And, how do we re-
flect and evaluate such complex toolkit research?
METHODOLOGY
This paper elucidates evaluation practices observed in mod-
ern toolkit research within the HCI community. To build up
an in-depth understanding of contemporary evaluation prac-
tices, we report the results of a meta-review based on an
analysis of a representative set of toolkit papers.
Dataset
To collect a representative set of HCI toolkit papers, we
gathered 68 papers matching the following inclusion criteria.
Publication Venue and Date, Keywords: we initially select-
ed 58 toolkit papers that were published since 2000 at the
major ACM SIGCHI venues (CHI, UIST, DIS, Ubicomp,
TEI, MobileHCI). We included papers containing keywords:
toolkit, design tool, prototyping tool, framework, API. All 58
papers comply with our proposed toolkit definition.
Exemplary Papers. We then identified 10 additional papers
published elsewhere, based on exemplary impact (e.g. cita-
tions, uptake) such as D3 [14], Piccolo/Jazz [6], and the Con-
text Toolkit [91]. Our total dataset includes 68 papers (Table
1). While other toolkit papers exist, our dataset serves as a
representative sample from which we could (1) gather insight
and (2) initiate meaningful discussion about evaluation.
Analysis and Results
The dataset was analyzed via several steps. One of the au-
thors conducted open-coding [16] on a subset of our sample,
describing the evaluation methods used in each publication.
Next, we collectively identified an initial set of evaluation
methods and their variations as used across papers. At this
point, four other co-authors performed focused coding [16]
on the entire sample. We continued to apply the codes to the
rest of the sample, iteratively refining and revisiting the cod-
ing schema. After coding all papers in our sample, we creat-
ed categories [16] to derive the overarching evaluation strat-
egies used by toolkit researchers, thus arriving at the four
evaluation strategies that we identify as (1) demonstration,
(2) usage, (3) technical evaluation, and (4) heuristic evalua-
tion. Table 1 summarizes the analysis, showing the count of
evaluation strategies seen in our sample. We caution that this
frequency count is not necessarily indicative of a strategy’s
overall appropriateness or success.

The following sections step through the four evaluation
types, summarized in Table 2. For each type, we discuss their
value and the specific techniques used. We then reflect on
challenges for that type, followed by opportunities to
strengthen the evaluation: opinions are based on our insights
gained from data analysis, our experiences and/or opinions
offered by other researchers. The result is a set of techniques
that researchers can use, on their own or in combination, to
assess claims made about their toolkits.
TYPE 1: DEMONSTRATION
The now famous “mother of all demos” by Douglas Engel-
bart [26] established how demonstrating new technology can
be a powerful way of communicating, clarifying and simply
showing new ideas and concepts. The transferability of an
idea to neighbouring problem spaces is often shown by
demonstrating application examples [83]. In our sample, 66
out of 68 papers used demonstrations of what the toolkit can
do, either as the only method (19/68) or in combination with
other methods (47/68). Demonstrations show what the toolkit
might support, as well as how users might work with it, rang-
ing from showing new concepts [32,91], to focused case
studies [4,96] to design space explorations [43,54,64].
Why Use Demonstrations?
The goal of a demonstration is to use examples and scenarios
to clarify how the toolkit’s capabilities enable the claimed
applications. A demonstration is an existence proof showing
that it is feasible to use and combine the toolkit’s components
into examples that exhibit the toolkit’s purpose and design
principles. These examples can illustrate different aspects of
the toolkit, such as using the basic building blocks, demon-
strating the workflows, or discussing the included tools.
Since toolkits are a ‘language’ to simplify the creation of new
interactive systems [30], demonstrations describe and show
how toolkits enable paths of least resistance for authoring.
In its most basic form, a demonstration consists of examples
exploring the expressiveness of the toolkit by showing a
range of different applications. More systematic approaches
include explorations of the threshold, ceiling or design space
supported by the toolkit. The threshold is the user’s ability to
get started using the toolkit, while ceiling refers to how much
can be achieved using the toolkit [73]. While demonstrations
may not show the full ‘height’ of the ceiling, they are an in-
dicator of the toolkit’s achievable complexity and potential
solution space. The principles and goals of the toolkit can
also be demonstrated through a design space exploration
which enumerates design possibilities [106] and gives exam-
ples from different points in that space.
Evaluation Techniques as Used in Demonstrations
Our sample reveals several techniques to demonstrate a
toolkit. These techniques are not mutually exclusive and can
be combined in different ways. The simplest unit of meas-
urement for demonstration is an individual instance. While
multiple instances can be described separately, researchers
may carefully select instances as collections to either explore
the toolkit’s depth (case studies) or its generative breadth

Table 2. A summary of the four evaluation strategies.

Ledo et al. (2018). Evaluation strategies for HCI toolkit research. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1-17).

https://doi.org/10.1145/3173574.3173610

26 MIT Tangible Media Group [Video]

https://vimeo.com/122370241

Sources of arguments for your systems

27

Olsen’s concepts, e.g., importance, generality,

reducing viscosity, expressivity, combination.
• Also recommended in UIST conference guide for authors

Formative validation with Green & Blackwell’s

Cognitive Dimensions Framework:

Evaluating User Interface Systems Research
Dan R. Olsen Jr.

Brigham Young University
Computer Science Department, Provo, Utah, USA

olsen@cs.byu.edu,

ABSTRACT
The development of user interface systems has languished
with the stability of desktop computing. Future systems,
however, that are off-the-desktop, nomadic or physical in
nature will involve new devices and new software systems
for creating interactive applications. Simple usability
testing is not adequate for evaluating complex systems. The
problems with evaluating systems work are explored and a
set of criteria for evaluating new UI systems work is
presented.

ACM Classification Keywords
H.5.2 User Interfaces

General Terms:
Human Factors

Author Keywords:
User Interface Systems Evaluation

INTRODUCTION
In the early days of graphical user interfaces, the creation of
new architectures for interactive systems was a lively and
healthy area of research. This has declined in recent years.
There are three reasons for this decline in new systems
ideas. The first is that, unlike those early days, there are
essentially three stable platforms (Windows, Mac, Linux)
upon which virtually all software is built and those
platforms have dictated the user interface architecture. This
is in contrast to the state of UI research 15 years ago when
there were many competing toolkits and platforms. The
second is that the stability of these platforms has lead to a
new generation of researchers who lack skills in toolkit or
windowing system architecture and design. The third reason
is the lack of appropriate criteria for evaluating systems
architectures. This paper addresses the last question of
“How should we evaluate new user interface systems so
that true progress is being made?”

WHY UI SYSTEMS RESEARCH?
Before addressing the evaluation question we must first
consider the value of user interface systems research. The
systems we have are stable. Applications are being written.
Work is progressing. The users are happy (sort of). Why
then does the world need yet another windowing system?

Forces for change
A very important reason for new UI systems architectures is
that many of the hardware and operating system
assumptions that drove the designs of early systems no
longer hold. Saving a byte of memory, the time criticality of
dispatching an input event to the right window or lack of
CPU power for geometric and image transformations are no
longer an issue. Yet those assumptions are built into the
functionality of existing systems. The constraints of screen
size are rapidly falling and we are finding that interaction in
a 10M pixel space is very different from interaction in a
250K pixel space.

Our assumptions about users and their expertise have
radically changed. Most of our windowing systems are
designed to deal with a populace who had never used a
graphical user interface. That assumption is no longer valid.
The rising generation is completely comfortable with
computing technology in a variety of forms and is
increasingly comfortable with change.

Our existing system models are barriers to the inclusion of
many of the interactive techniques that have been
developed. Research as shown that manipulating the mouse
gain can improve selection in various spaces [1] yet this
does not fit smoothly into any UI system model. Cameras
and touch tables produce inputs that are the size of a hand
or finger rather than a point, yet we force such techniques
into the standard mouse point model because that is all that
our systems support. Multiple input points and multiple
users are all discarded when compressing everything into
the mouse/keyboard input model. Lots of good research
into input techniques will never be deployed until better
systems models are created to unify these techniques for
application developers.

The advent of new interactive platforms also drives a need
for new systems architectures. The WWW forms a huge
base of interactive use, yet its interaction model is primitive
and the toolkits built around it are difficult. People are
increasingly moving their digital lives to PDAs, cell phones

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’07, October 7–10, 2007, Newport, Rhode Island, USA.
Copyright 2007 ACM 978-1-59593-679-2/07/0010...$5.00.

251
Olsen Jr, D. R. (2007). Evaluating user interface systems research. In Proceedings of the 20th annual ACM symposium on User interface software and technology (pp. 251-258).
Green, T., & Blackwell, A. (1998). Cognitive dimensions of information artefacts: a tutorial. In BCS HCI conference (Vol. 98, pp. 1-75). Sheffield, UK: Springer.

• Abstraction

• Hidden dependencies

• Premature commitment

• Secondary notation

• Viscosity

• Visibility

https://uist.acm.org/2025/author-guide/
https://doi.org/10.1145/1294211.1294256
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

Guide for choosing validation approaches

28

Tamara Munzner (from the Information Visualization

research, but broadly applicable)

Discuss pitfalls and how to prevent them

• All that coding means I deserve a systems paper

• Hammer in search of nail

• Dense as plutonium

• …

Process and Pitfalls in Writing Information
Visualization Research Papers

Tamara Munzner

University of British Columbia
tmm@cs.ubc.ca, http://www.cs.ubc.ca/⇠tmm

Abstract. The goal of this paper is to help authors recognize and avoid
a set of pitfalls that recur in many rejected information visualization
papers, using a chronological model of the research process. Selecting a
target paper type in the initial stage can avert an inappropriate choice
of validation methods. Pitfalls involving the design of a visual encoding
may occur during the middle stages of a project. In a later stage when
the bulk of the research is finished and the paper writeup begins, the
possible pitfalls are strategic choices for the content and structure of the
paper as a whole, tactical problems localized to specific sections, and
unconvincing ways to present the results. Final-stage pitfalls of writing
style can be checked after a full paper draft exists, and the last set of
problems pertain to submission.

1 Introduction

Many rejected information visualization research papers have similar flaws. In
this paper, I categorize these common pitfalls in the context of stages of the
research process. My main goal is to help authors escape these pitfalls, espe-
cially graduate students or those new to the field of information visualization.
Reviewers might also find these pitfalls an interesting point of departure when
considering the merits of a paper.

This paper is structured around a chronological model of the information
visualization research process. I argue that a project should begin with a careful
consideration of the type of paper that is the desired outcome, in order to avoid
the pitfalls of unconvincing validation approaches. Research projects that involve
the design of a new visual encoding would benefit from checking for several
middle-stage pitfalls in unjustified or inappropropriate encoding choices. Another
critical checkpoint is the late stage of the project, after the bulk of the work is
done, but before diving in to writing up results. At this point, you should consider
both strategic pitfalls about the high-level structure of the entire paper, tactical
pitfalls that a↵ect one or a few sections, and possible pitfalls in the specifics of
your approach to the results section. At a final stage, when there is a complete
paper draft, you can check for lower-level pitfalls of writing style, and avoid
submission-time pitfalls.

I have chosen a breezy style, following in the footsteps of Levin and Re-
dell [22] and Shewchuk [34]. My intent is serious, but I have tried to inventMunzner, T. (2008). Process and pitfalls in writing information visualization research papers. In Information visualization: human-centered issues and perspectives (pp.

134-153). Berlin, Heidelberg: Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-70956-5_6

Exercise: Brainstorm ways to validate your research

Take 5 minutes to think of 1–2 validation strategies that could be applied to your

research problem. Add them to the Miro board.

Together with a person next to you, take 10 minutes per person to discuss your

choice(s) of validation techniques:

• Are these validation suitable for the research contribution?

• How “useful” are these validations?

• What other ways could be used to validate?

29

Miro

ing systems research: “simple metrics can produce simplistic
progress that is not necessarily meaningful.” The central
question is thus: what is an evaluation? And, how do we re-
flect and evaluate such complex toolkit research?
METHODOLOGY
This paper elucidates evaluation practices observed in mod-
ern toolkit research within the HCI community. To build up
an in-depth understanding of contemporary evaluation prac-
tices, we report the results of a meta-review based on an
analysis of a representative set of toolkit papers.
Dataset
To collect a representative set of HCI toolkit papers, we
gathered 68 papers matching the following inclusion criteria.
Publication Venue and Date, Keywords: we initially select-
ed 58 toolkit papers that were published since 2000 at the
major ACM SIGCHI venues (CHI, UIST, DIS, Ubicomp,
TEI, MobileHCI). We included papers containing keywords:
toolkit, design tool, prototyping tool, framework, API. All 58
papers comply with our proposed toolkit definition.
Exemplary Papers. We then identified 10 additional papers
published elsewhere, based on exemplary impact (e.g. cita-
tions, uptake) such as D3 [14], Piccolo/Jazz [6], and the Con-
text Toolkit [91]. Our total dataset includes 68 papers (Table
1). While other toolkit papers exist, our dataset serves as a
representative sample from which we could (1) gather insight
and (2) initiate meaningful discussion about evaluation.
Analysis and Results
The dataset was analyzed via several steps. One of the au-
thors conducted open-coding [16] on a subset of our sample,
describing the evaluation methods used in each publication.
Next, we collectively identified an initial set of evaluation
methods and their variations as used across papers. At this
point, four other co-authors performed focused coding [16]
on the entire sample. We continued to apply the codes to the
rest of the sample, iteratively refining and revisiting the cod-
ing schema. After coding all papers in our sample, we creat-
ed categories [16] to derive the overarching evaluation strat-
egies used by toolkit researchers, thus arriving at the four
evaluation strategies that we identify as (1) demonstration,
(2) usage, (3) technical evaluation, and (4) heuristic evalua-
tion. Table 1 summarizes the analysis, showing the count of
evaluation strategies seen in our sample. We caution that this
frequency count is not necessarily indicative of a strategy’s
overall appropriateness or success.

The following sections step through the four evaluation
types, summarized in Table 2. For each type, we discuss their
value and the specific techniques used. We then reflect on
challenges for that type, followed by opportunities to
strengthen the evaluation: opinions are based on our insights
gained from data analysis, our experiences and/or opinions
offered by other researchers. The result is a set of techniques
that researchers can use, on their own or in combination, to
assess claims made about their toolkits.
TYPE 1: DEMONSTRATION
The now famous “mother of all demos” by Douglas Engel-
bart [26] established how demonstrating new technology can
be a powerful way of communicating, clarifying and simply
showing new ideas and concepts. The transferability of an
idea to neighbouring problem spaces is often shown by
demonstrating application examples [83]. In our sample, 66
out of 68 papers used demonstrations of what the toolkit can
do, either as the only method (19/68) or in combination with
other methods (47/68). Demonstrations show what the toolkit
might support, as well as how users might work with it, rang-
ing from showing new concepts [32,91], to focused case
studies [4,96] to design space explorations [43,54,64].
Why Use Demonstrations?
The goal of a demonstration is to use examples and scenarios
to clarify how the toolkit’s capabilities enable the claimed
applications. A demonstration is an existence proof showing
that it is feasible to use and combine the toolkit’s components
into examples that exhibit the toolkit’s purpose and design
principles. These examples can illustrate different aspects of
the toolkit, such as using the basic building blocks, demon-
strating the workflows, or discussing the included tools.
Since toolkits are a ‘language’ to simplify the creation of new
interactive systems [30], demonstrations describe and show
how toolkits enable paths of least resistance for authoring.
In its most basic form, a demonstration consists of examples
exploring the expressiveness of the toolkit by showing a
range of different applications. More systematic approaches
include explorations of the threshold, ceiling or design space
supported by the toolkit. The threshold is the user’s ability to
get started using the toolkit, while ceiling refers to how much
can be achieved using the toolkit [73]. While demonstrations
may not show the full ‘height’ of the ceiling, they are an in-
dicator of the toolkit’s achievable complexity and potential
solution space. The principles and goals of the toolkit can
also be demonstrated through a design space exploration
which enumerates design possibilities [106] and gives exam-
ples from different points in that space.
Evaluation Techniques as Used in Demonstrations
Our sample reveals several techniques to demonstrate a
toolkit. These techniques are not mutually exclusive and can
be combined in different ways. The simplest unit of meas-
urement for demonstration is an individual instance. While
multiple instances can be described separately, researchers
may carefully select instances as collections to either explore
the toolkit’s depth (case studies) or its generative breadth

Table 2. A summary of the four evaluation strategies.

Validation strategies

Tools for thinking about empirical research

30

Constructs vs. Operational definition

31

Construct: Theoretical and latent

concepts that (we expected to) help

explain and predict a phenomenon

Operational definition: A specification

of a procedure to manipulate or measure

an external, observable the phenomenon

Construct validity: How much the

operationalized measurement

correspond to the construct of interest

Intelligence

IQ score

Emotional
intelligence

EQ

Intelligence

Cognitive
abilities

IQ …

…

A construct may have multiple facets

32

Effectiveness: accuracy and completeness with

which users achieve specified goals.

Efficiency: resources expended in relation to

the accuracy and completeness with which

users achieve goals

Satisfaction: freedom from discomfort, and

positive attitudes towards the use of the

product

Usability

Effectiveness

Efficiency

Satisfaction

ISO 9241 standard for usability

A construct may be operationalized in multiple ways

33
For more examples, see Hornbæk, K. (2006). Current practice in measuring usability: Challenges to usability studies and research.
International journal of human-computer studies, 64(2), 79-102.

Accuracy: Number of errors, ratio of errors vs. success
Completeness: Number of tasks solved
Quality: Experts’ score of the outcome of the interactions

Time: Task completion time
Input rate: Keystrokes per minute
Mental effort: Users’ rating of their mental effort,
users’ performance in their secondary task

Preference: Rank preferred interface
Ease of use: Users’ rating
Perception of outcome: Users’ rating on sense of success

…

…

…

Usability

Effectiveness

Efficiency

Satisfaction

https://doi.org/10.1016/j.ijhcs.2005.06.002

N
A

SA
-T

A
SK

 L
O

A
D

 IN
D

E
X

 (N
A

SA
-T

L
X

); 20 Y
E

A
R

S L
A

T
E

R

Sandra G

. H
art

N
A

SA
-A

m
es R

esearch C
enter

M
offett Field, C

A

A

B
ST

R
A

C
T

N
A

SA
-TLX

 is a m
ulti-dim

ensional scale designed to obtain w
orkload estim

ates from
 one or

m
ore operators w

hile they are perform
ing a task or im

m
ediately afterw

ards. The years of research
that preceded subscale selection and the w

eighted averaging approach resulted in a tool that has
proven to be reasonably easy to use and reliably sensitive to experim

entally im
portant

m
anipulations over the past 20 years. Its use has spread far beyond its original application

(aviation), focus (crew
 com

plem
ent), and language (English). This survey of 550 studies in w

hich
N

A
SA

-TLX
 w

as used or review
ed w

as undertaken to provide a resource for a new
 generation of

users. The goal w
as to sum

m
arize the environm

ents in w
hich it has been applied, the types of

activities the raters perform
ed, other variables that w

ere m
easured that did (or did not) covary,

m
ethodological issues, and lessons learned

 B
A

C
K

G
R

O
U
N

D

W
orkload is a term

 that represents the cost of
accom

plishing m
ission requirem

ents for the hum
an operator.

If people could accom
plish everything they are expected to do

quickly, accurately, and reliably using available resources, the
concept w

ould have little practical im
portance. Since they

often cannot, or the hum
an cost (e.g., fatigue, stress, illness,

and accidents) of m
aintaining perform

ance is unacceptably
high, designers, m

anufacturers, m
anagers, and operators, w

ho
are ultim

ately interested in system
 perform

ance, need answ
ers

about operator w
orkload at all stages of system

 design and
operation. The m

any definitions that exist in the psychological
literature are a testam

ent to the com
plexity of the construct as

are the grow
ing num

ber of causes, consequences and
sym

ptom
s that have been identified. G

iven the confusion
am

ong the “experts”, it seem
s equally likely that people w

ho
are asked to provide ratings w

ill have a sim
ilar range of

opinions and apply the sam
e label (w

orkload) to very different
aspects of their experiences.

For this reason, the N
A

SA
 Task Load Index (N

A
SA

-
TLX

) consists of six subscales that represent som
ew

hat
independent clusters of variables: M

ental, Physical, and
Tem

poral D
em

ands, Frustration, Effort, and Perform
ance.

(A
ppendix). The assum

ption is that som
e com

bination of
these dim

ensions are likely to represent the “w
orkload”

experienced by m
ost people perform

ing m
ost tasks. These

dim
ensions w

ere selected after an extensive analysis of the
prim

ary factors that do (and do not) define the subjective
experience of w

orkload for different people perform
ing a

variety of activities ranging from
 sim

ple laboratory tasks to
flying an aircraft. C

oincidentally, these dim
ensions also

correspond to various theories that equate w
orkload w

ith the
m

agnitude of the dem
ands im

posed on the operator, physical,
m

ental, and em
otional responses to those dem

ands or the
operator’s ability to m

eet those dem
ands.

A
 w

eighting schem
e w

as introduced to take such
individual differences into account w

hen com
puting an

overall w
orkload score (Figure 1). Essentially, overall

 w
orkload represents the total areas of the six bars. The

w
eights are derived for each participant at the beginning of a

study by requiring sim
ple decisions about w

hich m
em

ber of
each paired com

bination of the 6 dim
ensions are m

ore related
to their personal definition of w

orkload. Each subscale rating
provided by that person during the study is then m

ultiplied by
the appropriate w

eight, developing a com
posite tailored to

individual w
orkload definitions. The benefit of this w

eighting
schem

e w
as an increase in sensitivity (to relevant variables)

and a decrease in betw
een-rater variability. The developm

ent
and theoretical rationale for the scale w

ere described in a
chapter published in 1988 by H

art &
 Staveland.

Since its introduction, N
A

SA
-TLX

 has been translated
into m

ore than a dozen languages, adm
inistered verbally, in

w
riting, or by com

puter, and m
odified in a variety of w

ays. It
has also been subjected to a num

ber of independent
evaluations in w

hich its reliability, sensitivity, and utility w
ere

Fig 1: G
raphic R

epresentation of w
eighted

subscale ratin gs and an overall w
orkload value

rating M
D

 PD
 TD

 Fr Ef Pe O
W

 W

ei ghts

*This w
ork is not subject to U

.S. copyright restrictions

PRO
C

EED
IN

G
S of the H

U
M

AN
 FAC

TO
RS AN

D
 ERG

O
N

O
M

IC
S SO

C
IETY 50th AN

N
U

AL M
EETIN

G
—

2006
904

Mental demand

Physical demand

Temporal demand
Performance

Effort
Frustration

Overall task load index

Constructs can be measured or manipulated

34

Example: measuring mental workload

NASA Task Load Index (NASA-TLX)

Rating on a 100-point range

Pairwise comparison of subscales’ importance

Name Task Da te

 Mental Demand How menta lly demand ing was the task?

 Physica l Demand How physica lly demand ing was the task?

 Tempora l Demand How hurried or rushed was the pace of the task?

 Per formance How successful were you in accomp lishing wha t
you were asked to do?

 E f for t How hard d id you have to work to accomp lish
your leve l of performance?

 Frustra tion How insecure , d iscouraged , irrita ted , stressed ,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index

Hart and Stave land ’s NASA Task Load Index (TLX) me thod assesses
work load on five 7-point sca les. Increments of high, med ium and low
estima tes for each point result in 21 grada tions on the sca les.

Very Low Very H igh

Very Low Very H igh

Very Low Very H igh

Very Low Very H igh

Perfec t Fa ilure

Very Low Very H igh

Example questions:

H
ar
t,

 S
. G
. (
20
06
, O
ct
ob
er
).
N
A
SA

-t
as
k

lo
ad

 in
de
x
(N
A
SA

-T
LX
);
20

 y
ea
rs

 la
te
r.
In

Pr
oc
ee
di
ng
s
of

 t
he

 h
um

an
 fa
ct
or
s
an
d
er

go
no
m
ic
s
so
ci
et
y
an
nu
al

 m
ee
ti
ng

 (V
ol
. 5
0,

 N
o.

9,

 p
p.

 9
04

-9
08
).
Sa

ge
 C
A
: L
os

 A
ng
el
es
, C
A
: S
ag
e
pu
bl
ic
at
io
ns
.

https://doi.org/10.1177/154193120605000909

Constructs can be measured or manipulated

35

Example: manipulating mental workload

Purpose: Determine how much eye tracking

could be used to estimate mental workload

Manipulation: Asking the driver to remember

single digit number and repeat back verbally

Immediately

After another number was presented

After another two numbers were presented

Fridman, L., Reimer, B., Mehler, B., & Freeman, W. T. (2018, April). Cognitive load estimation in the wild.
In Proceedings of the 2018 chi conference on human factors in computing systems (pp. 1-9).

http://dx.doi.org/10.1145/3173574.3174226

Causal model for explaining relationships among variables

36 Velloso, E., & Hornbæk, K. (2025). Theorising in HCI using Causal Models. In Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (pp. 1-17).

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Velloso and Hornbæk

EfficiencyUsability

Effectiveness

Satisfaction

Efficiency Usability
perception

Effectiveness

Satisfaction

(a) (b)

Figure 7: Di�erent theoretical assumptions for the relation-
ship between usability, e�ectiveness, e�ciency, and satisfac-
tion. Is usability the cause or the e�ect?

the bottom two: a sense of understanding of causal mechanisms
and control of events. Among the forms that theory can take, also
identi�ed by Reynolds—set of laws, axiomatic, and causal process—
we focus on the latter. However, this focus does not restrict us to
any particular kind of evidence. Both quantitative and qualitative
data are compatible with causal modelling, as are experimental and
observational studies. They are useful to structure claims regard-
less of their source and strength of evidence. A DAG can represent
assumptions derived from your intuition as well as those with sub-
stantial evidence reported in previous works; the reasoning behind
them can be elaborated in the accompanying verbal explanation.

Causal models can be used to theorise both about the problem
space and the solution space. You can use a DAG to formalise your
assumptions about the causes of a problem (e.g. Figure 14) as well
as to predict the e�ects of a new interactive solution (e.g. Figure 5).
Their modular structure also invites explorations within the theory
space—by extending them, removing nodes, expanding mediating
pathways, providing new explanations, and so on. To illustrate their
versatility, Table 2 exempli�es the uses of causal models at di�erent
stages of the research lifecycle. In the next sections, we provide
a practical overview of opportunities and challenges for DAGs in
HCI theory-building and make the case for their usefulness in both
quantitative and qualitative research.

4 Ten opportunities for HCI theorising with
causal models

So far, we have provided a general structure for how to theorise
using causal models. Now, we o�er reasons for why this is a good
theorising tactic for HCI research.

We use several examples from the literature to discuss the follow-
ing opportunities for causal models as conceptual representations of
theoretical claims: they make theoretical assumptions explicit, they
reveal the theoretical value of a research question, they help decide
which variables to include in a statistical model, they give mean-
ing to regression coe�cients, they allow for an easier extension
by future work, they reveal testable implications, they highlight
where interventions should focus, they shift the focus away from
null hypothesis testing towards the data-generating process behind
the phenomenon of interest, and they help identify limitations in

Figure 8: (a) DAG for Fitts’s Law assuming that movement
time (MT) is determined by the index of di�culty (ID) and
the input device (Dev). Once you stratify by ID, any observed
di�erences in MT are due to the device. (b) A di�erent DAG
for Fitts’s Law: movement time depends on ID and the user’s
experience with the device. Once you stratify by ID, any ob-
served di�erences in MT could be due to the device or the
user.

the study design. These opportunities can be leveraged at multiple
stages of the research lifecycle depicted in Table 2.

4.1 Make your theoretical assumptions explicit
Through their graphical form, DAGs make explicit claims about the
direction and nature of the relationship between variables. These
assumptions have consequences for the appropriateness of the
application of theory. For example, e�ectiveness, e�ciency, and sat-
isfaction are elements of the user experience commonly associated
with the concept of usability and, as such, are often used as usability
measures [27]. This implies the DAG in Figure 7(a). However, an-
other potential theoretical assumption for this relationship is that
after experiencing an e�ective, e�cient, and satisfactory interface,
users will report the perception of high usability, as depicted in
the DAG in Figure 7(b). This distinction has important theoretical
consequences—it is the di�erence between using these measures
to estimate a latent usability experience or using them to predict
usability scores.

A more contentious example is in the theoretical discussions
around the appropriate use of Fitts’s law for measuring the perfor-
mance of pointing devices. Fitts’s law models the movement time
to reach a target as a function of the distance from the pointer to
the target and the size of the target. Beyond the discussions around
its many mathematical formulations, there is also controversy in
the theoretical assumptions behind them.

The most popular account, as popularised by MacKenzie [44] and
made o�cial in the ISO 9241-9 standard [24] for evaluating pointing
devices, says that once the index of di�culty (a logarithmic measure
combining the distance and the width) is controlled, performance
di�erences are due to the device performance. The DAG in Figure
8(a) illustrates this.

However, as Drewes points out [19], Fitts’s original idea was that
pointing performance is limited by one’s information processing
capacity. In this account, any di�erences in performance are due to
the user: any device e�ect being due to lack of experience in using it
rather than any property inherent to the device itself. This implies

8

Section 3 in the paper includes good
explanation of these term and concrete
examples from HCI

Theorising in HCI using Causal Models
Eduardo Velloso

School of Computer Science
University of Sydney

Sydney, New South Wales, Australia
eduardo.velloso@sydney.edu.au

Kasper Hornbæk
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark

kash@di.ku.dk

Abstract
Although the literature on Human-Computer Interaction (HCI) cat-
alogues many theories, it o�ers surprisingly few tools for theorising.
This paper critiques dominant approaches to engaging with the-
ory and proposes a working model for theorising in HCI. We then
present graphical causal modelling as an e�ective theorising tool.
This includes a step-by-step guide to building causal models and
examples of their use in di�erent stages of the research process.
We explain how causal models help develop method-agnostic rep-
resentations of research problems using directed acyclic graphs,
identify potential confounders, and construct alternative interpre-
tations of data. Finally, we discuss their limitations and challenges
for adoption by the HCI community.

CCS Concepts
• Human-centered computing ! HCI theory, concepts and
models; • Mathematics of computing ! Causal networks.

Keywords
Causal modelling, HCI theory, directed acyclic graphs
ACM Reference Format:
Eduardo Velloso and Kasper Hornbæk. 2025. Theorising in HCI using Causal
Models. In CHI Conference on Human Factors in Computing Systems (CHI
’25), April 26–May 01, 2025, Yokohama, Japan. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3706598.3713789

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713789

1 Introduction
Human-Computer Interaction has a theory problem. HCI lies at
the intersection of a diverse set of disciplines with a wide range of
ontological and epistemological commitments, methods, and stan-
dards of evidence, welcoming various types of contributions [80].
It would be unsurprising to attend a SIGCHI conference where a
paper about a series of statistical analyses of experimental data
about an interaction design is presented side-by-side with one
about an auto-ethnography of an author’s experience of a similar
interaction, followed by one describing an interactive system to
help improve that interaction. Such methodological variety has
created a rich and diverse research community but has led to in-
consistent and haphazard development and application of theory.
Such an abundance of frameworks, each o�ering a di�erent lens
and methodological toolkit for understanding human-computer

interactions, has led to a fragmented landscape where researchers
struggle to build upon each other’s work. This paper aims to bene�t
the working researcher who wants tools to help think about re-
search questions. In contrast to the extensive literature on research
methods (e.g. [14, 21, 39]) and speci�c theories (e.g. [12, 57]), there
are few resources on how to theorise in HCI. This paper takes a step
towards minimising this issue by o�ering practical tools for HCI
theorising, emphasising the process of developing new ideas and
insights as opposed to the �nal product of theory.

The philosopher Isaiah Berlin drew on the ancient Greek poet
Archilocus to make the distinction between “hedgehog thinkers”
and “fox thinkers”—“a fox knows many things, but a hedgehog
knows one big thing” [8]. Hedgehogs try to relate their observations
to one overarching theory. In contrast, the fox pursues many direc-
tions without trying to �t them all under the same umbrella, seeing
the world in its full complexity. Every year in the CHI proceedings
(and similar venues), one can �nd references to a wide range of
theories—self-determination theory [70], feminist theories [5], criti-
cal race theory [49], entanglement theories [26], activity theory [3],
behaviour change theory [17], theory of planned behaviour [42],
soma design [66], �ow theory [16], among many others. These are
theories for hedgehogs—they provide widely encompassing lenses
through which to investigate the relationships between people and
interactive systems.

This kind of theory can seem daunting to newcomers in the �eld.
It is widely applicable, complex to grasp, and di�cult to connect
to everyday research questions. The hedgehog’s emphasis on the-
ories can give the impression that developing and working with
theory is a privilege for senior members of the community. As a
result, we are left with a shallow engagement with theory, as re-
searchers super�cially adopt theoretical frameworks as a means
of suggesting alignment with an intellectual movement—a kind of
theoretical grandstanding—rather than deeply testing, integrating,
or developing them.

This paper presents an alternative way of approaching theory in
HCI—graphical causal modelling—a way more suited to foxes and to
theorising in everyday research. Our goal is to present an approach
that has been gaining traction outside the �eld (e.g. epidemiol-
ogy [68], nutrition [72], psychology [58]) but is still under-utilised
in HCI, even though it �ts its ethos. Much has been written about
the statistical and computational properties of causal models (e.g.
do-calculus [51] and structural equation models [9]), but here we
focus on their applications as tools for theorising in an HCI context.
We explore opportunities and limitations of the approach with a
range of HCI examples, o�ering a practical way for future authors
to make their theoretical claims explicit in their papers. We high-
light how causal models explicate theoretical assumptions, reveal
the theoretical value of research questions, support the creation and

1

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Velloso and Hornbæk

squeaky hinge of your bathroom door. In contrast, the solution
space encompasses all possible solutions to every problem, both
the ones that exist and the ones that do not. These solutions can
take any shape, including physical artefacts (e.g. a sensor), business
processes (e.g. a set of indicators for assessing workers’ perfor-
mance), software (e.g. a smartphone app), and so on. The direct link
between problem space and solution space is not the concern of
theory; rather, it is the concern of practice.

The design process can begin with either of those. A UX designer
who wants to improve the commute experience of visually impaired
citizens starts the process in the problem space. An engineer who
developed a new metamaterial that can change shape and is inter-
ested in exploring its potential applications in interactive devices
starts their process in the solution space.

The process of exploring each space involves inquiry (for ex-
plicating problems) and invention (for generating solutions) [31],
framing and reframing [18], and is iterative and non-linear. Lessons
learned in exploring one space in�uence the exploration of the
other. For example, one might start from a human need (Problem
Space), develop a prototype solution (Solution Space), and, through
its evaluation, reveal deeper problems hidden beneath the surface
(Problem Space), which, in turn, inspire new solutions (Solution
Space).

This simpli�ed model provides a useful abstraction for us to think
about the design process and tease out the distinction between HCI
practice and research. Consider the example of an organisation that
maintains a popular website. Their IT team identi�ed an opportu-
nity to improve customer conversion rates, so they conducted a
series of observation sessions followed by interviews with current
users and potential users who are not currently engaging with the
website. Based on their �ndings, they identi�ed several potential
improvements that could be made to their current interface and
built a new version of the system. They deployed it in an A/B test,
serving it to half of the incoming users within a time window and

Problem
Space

Solution
Space

Theory
Space

THEORISING

PRACTICE

Figure 1: HCI theorising vs practice: both seek to link the
problem and solution spaces, but HCI research must also
make use of theory in their explorations and contribute back
to theory. Blue arrows indicate theorising activities.

measuring conversion rates in each condition. They found that the
new version of the website o�ered improvements over the previous
version. Though valuable for the organisation, does a project like
this o�er a research contribution? If not, what is it missing?

To understand this gap, we must turn our attention to a third
space—the theory space. The theory space contains all possible the-
ories in the huge diversity of forms they come in. These can include
causal statements, graphical models, conceptual frameworks, and
sets of laws, among many others. Our argument is that a design
project that does not contribute to the theory space lacks something
central to research. Does this mean that without a contribution to
theory, the project is worthless? No. Many design projects do not
make a direct contribution to theory but still have a huge impact.
Does it mean that it lacks rigour? No. As the example shows, though
rigour is necessary for a contribution to theory, it is not su�cient.
Does it mean that it should not see the light of day in the form of
a publication? No. There is still room for white papers, case stud-
ies, and works-in-progress tracks to capture current practice and
inspire future projects. However, in our view, the link to the theory
space is essential for a research contribution. In summary, we �nd
that academic research should build upon theory and contribute
back to theory. In other words, it should involve theorising.

2.3.2 Tactics in Theorising. Relevant works from di�erent disci-
plines have proposed di�erent tactics for theorising. Weick [77],
for instance, proposed seven, namely abstracting, generalizing, re-
lating, selecting, explaining, synthesising, and idealising. The idea
here is that instead of focusing on a particular form or purpose of
theory, the focus is on the processes that develop it. Abstracting, for
instance, is about the progressive re�nement of ideas to a more
general, abstract form; this might help relate to existing theoretical
ideas or formulate one’s ideas in the most general way possible.

As another example, Van Dongen et al. focused on productive
explanation [73]. In their model of productive explanation, a theo-
rist �rst articulates a verbal theory—a narrative that helps to make
sense of a phenomenon but that is not yet speci�c enough for
testing predictions. They then explicate this verbal theory into
a formal model containing precise statements about components
and relations present in the system. Such a formal model is then
used to produce a statistical pattern that reproduces the observed
phenomenon. In this framework, an explanation can be evaluated
according to the precision of the formal models consistent with it,
the robustness with which the phenomenon is reproduced through
its formal models, and the empirical relevance of its components
in terms of how necessary they are to produce the statistical pat-
tern representing the phenomenon. Breakdowns in the productive
explanation chain lead to problems, including empty formalism
(no verbal theory), illusory explanation (the formal model does
not reproduce the statistical pattern), incorrect pattern (the statisti-
cal pattern is not a good representation of the phenomenon), and
phantom phenomenon (the phenomenon being modelled does not
exist).

Figure 1 suggests that theorising is using these tactics to move
within the theory space, between the theory space and the problem
space, and between the theory space and the solution space. Cu-
riously, however, we have plenty of known methods for charting
the problem and solution spaces. Unfortunately, despite the work

4

Theorising in HCI using Causal Models CHI ’25, April 26–May 01, 2025, Yokohama, Japan

of Weick [77], we have much less support for theorising. The mul-
tidisciplinarity of HCI ampli�es this issue by making it di�cult
to �nd a common ground to reconcile perspectives from di�erent
backgrounds. What follows is an exploration of doing so using
causal models, which can o�er a shared language to make theoreti-
cal claims and think about research questions with people from all
backgrounds.

3 Introduction to causal models
Causal models are conceptual and statistical tools used to represent
and analyse causal relationships between variables within a system.
The origins of causal modelling date back to the early 1900s with
Sewall Wright’s path analysis [81] and were later extended with
the work of Spirtes et al. [65] and Pearl [51]. In this paper, we focus
on the conceptual application of causal models for making theo-
retical claims in the form of directed acyclic graphs, along with the
verbal explanations of assumptions and mechanisms that govern the
relationships depicted therein. Although we leave a full description
of their statistical properties outside the scope of this paper, we
refer the reader to Pearl [52] for an accessible introduction to their
applications in causal inference.

3.1 What does a causal model look like?
In a theorising context, causal models include a formal represen-
tation that explains how theoretical concepts are causally related.
They include the assumptions about the �ow of causality and expla-
nations about the mechanisms through which these causes occur.
Though these models can be expressed mathematically, here we
focus on their conceptual representation in the form of a directed
acyclic graph accompanied by corresponding textual explana-
tions.

In causal modelling, directed acyclic graphs (DAGs) visually rep-
resent the causal assumptions behind the process that generated
the observed data. Here, we take a counterfactual view of causa-
tion as per Pearl [51], so saying that X causes Y means that if X
had been di�erent, Y is likely to have been di�erent, too. These
causal relationships are probabilistic, meaning that they increase or
decrease the likelihood of observing an outcome but do not guar-
antee it. This acknowledges the in�uence of other uncontrolled
factors and inherent variability in the data. DAGs are heuristic and
qualitative—though they can help you build and interpret your sta-
tistical models, they do not explicitly model parameters. Like other
graphs, DAGs are comprised of nodes—boxes or circles representing
theoretical concepts—and directed edges—arrows that indicate a
causal relationship. DAGs are acyclic, meaning that they only allow
single-headed arrows, and the causes in the model only �ow in one
direction—no circular causation is allowed: If you follow the arrows
starting from any node, you will never return to the same node.
This is because they assume that causality is unidirectional—causes
precede e�ects and do not loop back. Feedback and time-dependent
processes can be modelled by creating separate nodes for states of
theoretical concepts at each point in time.

Figure 2 shows a DAG with some of its most important concepts.
A research project is typically interested in estimating the e�ect of
one or more causes of interest on one or more outcomes of interest.

Cause of
interest

Collider

Outcome
of interest

Confounder

Mediator

Figure 2: Basic elements of a directed acyclic graph: cause,
outcome, mediator, confounder (common cause), and collider
(common e�ect).

This e�ect is the causal estimand. Sometimes, the researcher is inter-
ested in the total e�ect of the cause of interest (e.g. an experimental
intervention) on an outcome of interest (e.g. a measured dependent
variable), encompassing all possible causal pathways. However,
there are cases where the researcher might be interested in its di-
rect e�ect, excluding any e�ects mediated by other variables. The
variables that account for these relationships are called mediators,
and they explain why a certain causal e�ect exists. For example,
when testing the e�ect of a new interface design on the perceived
usability of a website, the team might be interested in the total e�ect
of the design or in the individual contribution of each new feature
of the design (e.g. the new layout, the new colour scheme)—the
e�ect of these features, therefore, mediate the e�ect of the interface
design. Other variables might bias the observed causal estimand if
they are not appropriately accounted for. Confounders are variables
that in�uence both the cause and the outcome of interest and, if not
controlled for, can bias the e�ect estimate. Colliders are common
e�ects of the cause and outcome of interest. They should not be
controlled for, as adjusting for colliders can create spurious asso-
ciations between the cause and outcome of interest, even if one
does not exist. We will revisit and show examples of these biases in
Section 4.5.

The visual nature of DAGs makes theoretical assumptions easy
to visualise and discuss. Their simplicity allows those with mini-
mal formal training in causal inference or research design to ex-
plore complex relationships between variables. Whether formally
speci�ed by a research team, sketched out during a brainstorm-
ing session, or discussed on the back of a napkin with a research
participant, DAGs provide a structured way to articulate causal
hypotheses. Such versatility makes them a powerful tool for theo-
rising in a �eld where consultative and collaborative practices are at
the core of its ethos. Nevertheless, DAGs support robust statistical
methods, with packages in R (e.g. dagitty [69]) and python (e.g.
DoWhy [60]) for drawing and analysing causal graphs. In addition, re-
cent works in the �eld of Information Visualisation have produced
excellent causal visualisation tools that can support theorising with
DAGs [29, 75, 76]. As a recent example, Guo et al. [29]’s CausalVis
supports not only causal diagramming with DAGs but also causal
inference tasks, including cohort construction and re�nement and
treatment e�ect exploration.

5

Different theoretical assumptions

E,E,S estimates the
latent usability
construct

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Velloso and Hornbæk

EfficiencyUsability

Effectiveness

Satisfaction

Efficiency Usability
perception

Effectiveness

Satisfaction

(a) (b)

Figure 7: Di�erent theoretical assumptions for the relation-
ship between usability, e�ectiveness, e�ciency, and satisfac-
tion. Is usability the cause or the e�ect?

the bottom two: a sense of understanding of causal mechanisms
and control of events. Among the forms that theory can take, also
identi�ed by Reynolds—set of laws, axiomatic, and causal process—
we focus on the latter. However, this focus does not restrict us to
any particular kind of evidence. Both quantitative and qualitative
data are compatible with causal modelling, as are experimental and
observational studies. They are useful to structure claims regard-
less of their source and strength of evidence. A DAG can represent
assumptions derived from your intuition as well as those with sub-
stantial evidence reported in previous works; the reasoning behind
them can be elaborated in the accompanying verbal explanation.

Causal models can be used to theorise both about the problem
space and the solution space. You can use a DAG to formalise your
assumptions about the causes of a problem (e.g. Figure 14) as well
as to predict the e�ects of a new interactive solution (e.g. Figure 5).
Their modular structure also invites explorations within the theory
space—by extending them, removing nodes, expanding mediating
pathways, providing new explanations, and so on. To illustrate their
versatility, Table 2 exempli�es the uses of causal models at di�erent
stages of the research lifecycle. In the next sections, we provide
a practical overview of opportunities and challenges for DAGs in
HCI theory-building and make the case for their usefulness in both
quantitative and qualitative research.

4 Ten opportunities for HCI theorising with
causal models

So far, we have provided a general structure for how to theorise
using causal models. Now, we o�er reasons for why this is a good
theorising tactic for HCI research.

We use several examples from the literature to discuss the follow-
ing opportunities for causal models as conceptual representations of
theoretical claims: they make theoretical assumptions explicit, they
reveal the theoretical value of a research question, they help decide
which variables to include in a statistical model, they give mean-
ing to regression coe�cients, they allow for an easier extension
by future work, they reveal testable implications, they highlight
where interventions should focus, they shift the focus away from
null hypothesis testing towards the data-generating process behind
the phenomenon of interest, and they help identify limitations in

Figure 8: (a) DAG for Fitts’s Law assuming that movement
time (MT) is determined by the index of di�culty (ID) and
the input device (Dev). Once you stratify by ID, any observed
di�erences in MT are due to the device. (b) A di�erent DAG
for Fitts’s Law: movement time depends on ID and the user’s
experience with the device. Once you stratify by ID, any ob-
served di�erences in MT could be due to the device or the
user.

the study design. These opportunities can be leveraged at multiple
stages of the research lifecycle depicted in Table 2.

4.1 Make your theoretical assumptions explicit
Through their graphical form, DAGs make explicit claims about the
direction and nature of the relationship between variables. These
assumptions have consequences for the appropriateness of the
application of theory. For example, e�ectiveness, e�ciency, and sat-
isfaction are elements of the user experience commonly associated
with the concept of usability and, as such, are often used as usability
measures [27]. This implies the DAG in Figure 7(a). However, an-
other potential theoretical assumption for this relationship is that
after experiencing an e�ective, e�cient, and satisfactory interface,
users will report the perception of high usability, as depicted in
the DAG in Figure 7(b). This distinction has important theoretical
consequences—it is the di�erence between using these measures
to estimate a latent usability experience or using them to predict
usability scores.

A more contentious example is in the theoretical discussions
around the appropriate use of Fitts’s law for measuring the perfor-
mance of pointing devices. Fitts’s law models the movement time
to reach a target as a function of the distance from the pointer to
the target and the size of the target. Beyond the discussions around
its many mathematical formulations, there is also controversy in
the theoretical assumptions behind them.

The most popular account, as popularised by MacKenzie [44] and
made o�cial in the ISO 9241-9 standard [24] for evaluating pointing
devices, says that once the index of di�culty (a logarithmic measure
combining the distance and the width) is controlled, performance
di�erences are due to the device performance. The DAG in Figure
8(a) illustrates this.

However, as Drewes points out [19], Fitts’s original idea was that
pointing performance is limited by one’s information processing
capacity. In this account, any di�erences in performance are due to
the user: any device e�ect being due to lack of experience in using it
rather than any property inherent to the device itself. This implies

8

E,E,S predicts the latent
usability construct

Exercise: Think about constructs and operationalization

Take 5 minutes to think of one construct and two ways to

operationalize it. Write your thoughts on the Miro board.

If your research doesn’t use empirical validation, do this task as a

thought experiment

Together with a person next to you, take 10 minutes per person

to discuss:

• Are the operationalization correspond to the construct?

• What are other ways to operationalize?

37

Miro
Construct: Theoretical and latent
concepts that (we expected to) help
explain and predict a phenomenon

Operational definition: A specification
of a procedure to manipulate or
measure an external, observable the
phenomenon

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Velloso and Hornbæk

EfficiencyUsability

Effectiveness

Satisfaction

Efficiency Usability
perception

Effectiveness

Satisfaction

(a) (b)

Figure 7: Di�erent theoretical assumptions for the relation-
ship between usability, e�ectiveness, e�ciency, and satisfac-
tion. Is usability the cause or the e�ect?

the bottom two: a sense of understanding of causal mechanisms
and control of events. Among the forms that theory can take, also
identi�ed by Reynolds—set of laws, axiomatic, and causal process—
we focus on the latter. However, this focus does not restrict us to
any particular kind of evidence. Both quantitative and qualitative
data are compatible with causal modelling, as are experimental and
observational studies. They are useful to structure claims regard-
less of their source and strength of evidence. A DAG can represent
assumptions derived from your intuition as well as those with sub-
stantial evidence reported in previous works; the reasoning behind
them can be elaborated in the accompanying verbal explanation.

Causal models can be used to theorise both about the problem
space and the solution space. You can use a DAG to formalise your
assumptions about the causes of a problem (e.g. Figure 14) as well
as to predict the e�ects of a new interactive solution (e.g. Figure 5).
Their modular structure also invites explorations within the theory
space—by extending them, removing nodes, expanding mediating
pathways, providing new explanations, and so on. To illustrate their
versatility, Table 2 exempli�es the uses of causal models at di�erent
stages of the research lifecycle. In the next sections, we provide
a practical overview of opportunities and challenges for DAGs in
HCI theory-building and make the case for their usefulness in both
quantitative and qualitative research.

4 Ten opportunities for HCI theorising with
causal models

So far, we have provided a general structure for how to theorise
using causal models. Now, we o�er reasons for why this is a good
theorising tactic for HCI research.

We use several examples from the literature to discuss the follow-
ing opportunities for causal models as conceptual representations of
theoretical claims: they make theoretical assumptions explicit, they
reveal the theoretical value of a research question, they help decide
which variables to include in a statistical model, they give mean-
ing to regression coe�cients, they allow for an easier extension
by future work, they reveal testable implications, they highlight
where interventions should focus, they shift the focus away from
null hypothesis testing towards the data-generating process behind
the phenomenon of interest, and they help identify limitations in

Figure 8: (a) DAG for Fitts’s Law assuming that movement
time (MT) is determined by the index of di�culty (ID) and
the input device (Dev). Once you stratify by ID, any observed
di�erences in MT are due to the device. (b) A di�erent DAG
for Fitts’s Law: movement time depends on ID and the user’s
experience with the device. Once you stratify by ID, any ob-
served di�erences in MT could be due to the device or the
user.

the study design. These opportunities can be leveraged at multiple
stages of the research lifecycle depicted in Table 2.

4.1 Make your theoretical assumptions explicit
Through their graphical form, DAGs make explicit claims about the
direction and nature of the relationship between variables. These
assumptions have consequences for the appropriateness of the
application of theory. For example, e�ectiveness, e�ciency, and sat-
isfaction are elements of the user experience commonly associated
with the concept of usability and, as such, are often used as usability
measures [27]. This implies the DAG in Figure 7(a). However, an-
other potential theoretical assumption for this relationship is that
after experiencing an e�ective, e�cient, and satisfactory interface,
users will report the perception of high usability, as depicted in
the DAG in Figure 7(b). This distinction has important theoretical
consequences—it is the di�erence between using these measures
to estimate a latent usability experience or using them to predict
usability scores.

A more contentious example is in the theoretical discussions
around the appropriate use of Fitts’s law for measuring the perfor-
mance of pointing devices. Fitts’s law models the movement time
to reach a target as a function of the distance from the pointer to
the target and the size of the target. Beyond the discussions around
its many mathematical formulations, there is also controversy in
the theoretical assumptions behind them.

The most popular account, as popularised by MacKenzie [44] and
made o�cial in the ISO 9241-9 standard [24] for evaluating pointing
devices, says that once the index of di�culty (a logarithmic measure
combining the distance and the width) is controlled, performance
di�erences are due to the device performance. The DAG in Figure
8(a) illustrates this.

However, as Drewes points out [19], Fitts’s original idea was that
pointing performance is limited by one’s information processing
capacity. In this account, any di�erences in performance are due to
the user: any device e�ect being due to lack of experience in using it
rather than any property inherent to the device itself. This implies

8

Effectiveness:
• Accuracy: Number of errors, ratio of errors
vs. success

• Number of tasks solved

Efficiency:
• Task completion time
• Mental effort rating

Examples:

Types of research by variable relationships

38

▸ Observation: Among 10 teens who play a specific
game, 8 can touch-type. Among 12 teens who did
not play, 2 can touch-type.

▸ Log number of gaming hours per week and
measure their typing speed. Found a correlation
that the higher gaming hours, the higher the
typing speed

▸ Randomly assign teens into 2 groups. One group
is assigned to play the game a certain hours per
week, the other not. After 3 months, the typing
speed of the gaming group is higher than the non-
gaming group.

Experimental research: determine causal
relationships between variables
“Y happens because of X”

Relational research: identify relationships
between multiple variables
“When Y happens, X also happens”

Descriptive research: constructing an
accurate description of what happened
“Y happened”

Example: collaboration pattern on google doc

• Data: Interaction traces from 96 Google Docs from

students’ work in a semester

• Researchers group the traces into collaboration

styles

• These styles are then associated with the writing

quality rated by experts

• Some collaboration styles yielded higher writing

quality than others

39 Olson et al. (2017) How People Write Together Now

• Descriptive research: “Y happened”
• Relational research: “When Y happens, X also happens”
• Experimental research: “Y happens because of X”

https://doi.org/10.1145/3038919

Example: Update intervals for editing shared documents

• Collaboration behavior on Google Docs

• Different update intervals are presented to

the observers

• Observers rate their experience (e.g., ability

to follow updates, naturalness)

• Results: Different strategies yielded

different ratings

40

• Descriptive research: “Y happened”
• Relational research: “When Y happens, X also happens”
• Experimental research: “Y happens because of X”

The E�ects of Update Interval and Reveal Method on
Writer Comfort in Synchronized Shared-Editors

Yen-Ting Yeh∗ Nikhita Joshi∗ Daniel Vogel
y6yeh@uwaterloo.ca nvjoshi@uwaterloo.ca dvogel@uwaterloo.ca

Cheriton School of Computer Science, Cheriton School of Computer Science, Cheriton School of Computer Science,
University of Waterloo University of Waterloo University of Waterloo

Canada Canada Canada

or

or

or

or
Manual

Sentence
delay

Character
delay

Time
delay

Real-time
Low

High

Update
strategy
controllability

(a) Writer’s view. (b) Observer’s view for different update strategies.

Figure 1: Strategies with di�erent update intervals: (a) writer’s view with a timer bar at the bottom; (b) observer’s view of
di�erent update strategies. Yellow and purple tint illustrate updated text within one interval. Update intervals are ordered top
to bottom by controllability (i.e., how much direct control the writer has over the update).
ABSTRACT
Synchronized shared-editors like Google Docs allow people to write
together, but there is no “privacy of writing” which can make writ-
ers feel uncomfortable. We propose methods to give writers more
control over when and how their edits are shown to collaborators
to increase comfort. These are in the form of di�erent update strate-
gies composed of an update interval and a reveal method. Results
from an experiment with simulated observers show that alternative
update strategies can be bene�cial, each having their own pros
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642330

and cons. A follow-up experiment with writer and observer pairs
validates these �ndings and shows that observers are amenable to
experiencing short delays caused by alternative update strategies.
Our work shows that synchronous writing tools should support
alternative update strategies that preserve both collaborator aware-
ness and writer comfort.

CCS CONCEPTS
• Human-centered computing ! Collaborative and social
computing systems and tools; Interaction techniques.

KEYWORDS
Collaborative writing, Writer comfort, Synchronized shared-editors
ACM Reference Format:
Yen-Ting Yeh, Nikhita Joshi, and Daniel Vogel. 2024. The E�ects of Update
Interval and Reveal Method on Writer Comfort in Synchronized Shared-
Editors. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3613904.3642330

Yeh et al. (2024) The Efects of Update Interval and Reveal Method on Writer Comfort in
Synchronized Shared-Editors

https://doi.org/10.1145/3613904.3642330
https://doi.org/10.1145/3613904.3642330
https://doi.org/10.1145/3613904.3642330

Example: Spotify app navigation

41
King, R., Churchill, E. F., & Tan, C. (2017). Designing with data: Improving the user experience
with A/B testing. O'Reilly Media, Inc.

Make it easier to discover features
We predict that by making the navigation of the application more
prominent, more new users will retain past the second week
because it is easier for them to discover more features in the
application.

Figure 5-14 shows our experimentation framework now with the
hypotheses outlined.

FIGURE 5-14.
Spotify navigation example showing the two hypotheses that were being explored.

Experiment 1: Designing the hypotheses
Figure 5-15 shows two examples of designs the team created to repre-
sent the two hypotheses that they came up with and compares them to
the control. Here you’ll see that in the treatment of the first hypothesis,
the content of the navigation has changed, but the mechanism to get
there (the “hamburger menu”) is still the same. We are just showing
one treatment here for simplicity, but the team also tried different treat-
ments with different information architectures as well.

menu control which had fewer navigation items. Two versions of the
information architecture were being tested (remember in Chapter 4
when we suggested you keep some of your old hypotheses in your back
pocket?). In test cell A, the “Profile” page had been combined with the
“Your Library” tab; in test cell B, “Radio” had been combined with the
“Browse” tab.

FIGURE 5-17.
Design treatments for Experiment 2 showing the “hamburger” navigation con-
trol versus the two versions of the tabbed navigation.

EXPERIMENT 2: INFORMATION ARCHITECTURE

Control Cell A Cell B

Search Home Home

Home Browse Browse

Browse Search Search

Radio Radio Your Library

Your Library Your Library Profile

Now, all of this was being tested on iOS and on Android, and this time
the new designs resulted in an improvement to second-week retention.
Cell A had the added benefit of also increasing another proxy metric
that the team cared about—and so it made sense to launch that one to
all users.

Conditions: Three designs

Measurement: Second week retention rate

• Descriptive research: “Y happened”
• Relational research: “When Y happens, X also happens”
• Experimental research: “Y happens because of X”

Example: Survey on AI usage in coding

42
Liang, J. T., Yang, C., & Myers, B. A. (2024, February). A large-scale survey on the usability
of ai programming assistants: Successes and challenges. In Proceedings of the 46th IEEE/
ACM international conference on software engineering (pp. 1-13).

• Descriptive research: “Y happened”
• Relational research: “When Y happens, X also happens”
• Experimental research: “Y happens because of X”

A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges ICSE 2024, April 14–20, 2024, Lisbon, Portugal

Table 1: Participants’ self-reported usage of popular AI programming assistants. An asterisk (*) denotes a write-in suggestion,
which has limited information on its usage distribution. Percentages in italics on the chart (#%) represent the percent of the
distribution that reported "Always"/"Often" (left) and "Rarely"/"Tried but gave up" (right).

Tool # users Med. % Usage distributioncode written

Amazon CodeWhisperer 50 5% 24% 61%

ChatGPT* 25 20% 59% 14%

GitHub Copilot 306 30.5% 46% 30%

TabNine 118 20% 27% 66%

Organization-speci�c code generation tool trained
on proprietary code

54 37% 29% 56%

Always (1+ times daily) Often (once daily) Sometimes (weekly) Rarely (monthly) Tried but gave up

Table 2: Participants’ motivations for using and not using AI programming assistants.

Motivation Distribution

A. For using
M1 To have an autocomplete or reduce the amount of keystrokes I make. 86% 6.2%

M2 To �nish my programming tasks faster. 76% 12%

M3 To skip needing to go online to �nd speci�c code snippets, programming
syntax, or API calls I’m aware of, but can’t remember.

68% 14%

M4 To discover potential ways or starting points to write a solution to a
problem I’m facing.

50% 24%

M5 To �nd an edge case for my code I haven’t considered. 36% 44%

B. For not using
M6 Code generation tools write code that doesn’t meet functional or non-

functional (e.g., security, performance) requirements that I need.
54% 34%

M7 It’s hard to control code generation tools to get code that I want. 48% 36%

M8 I spend too much time debugging or modifying code written by code
generation tools.

38% 45%

M9 I don’t think code generation tools provide helpful suggestions. 34% 46%

M10 I don’t want to use a tool that has access to my code. 30% 51%

M11 I write and use proprietary code that code generation tools haven’t seen
before and don’t generate.

28% 59%

M12 To prevent potential intellectual property infringement. 26% 66%

M13 I �nd the tool’s suggestions too distracting. 26% 51%

M14 I don’t understand the code written by code generation tools. 16% 76%

M15 I don’t want to use open-source code. 10% 89%

Very important Important Moderately important Slightly important Not important at all

not using them (M9). By having code that was not useful, users
engaged in the time-consuming process of modifying or debugging
code (M8). This was also a salient motivation, as 38% of participants
rated it as an important reason for not using these tools. Partici-
pants resonated the least with not understanding generated code
(M14) and not wanting to use open-source code (M15), as 76% and
89% of participants rated them as not important.

4.3 Successful use cases
Survey participants described situations where they were most
successful in using AI programming assistants. We found 10 types
of situations, which we describe below. We report the frequencies
of the codes using the multiplication symbol (⇥).

Repetitive code (78⇥). Participants were successful in using the
AI programming assistants to generate repetitive code, such as
"boilerplate [code]" (P165), "repetitive endpoints for crud" (P164), and
"college assignments" (P265) that had repeated functionality or were
common programming tasks. This was the most frequent code in
our data.

� Complete code that is highly repetitive but cannot be copied
and pasted directly." (P195)

Code with simple logic (68⇥). Consistent with prior work [56],
participants reported using AI programming assistants to success-
fully generate code with simple logic. This was the second most
mentioned code in the dataset. Examples include "small independent
utils functions" (P155), "sorting algorithms" (P177), and "small func-
tions like storing the training model into local �le systems" (P255).

A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges ICSE 2024, April 14–20, 2024, Lisbon, Portugal

Table 1: Participants’ self-reported usage of popular AI programming assistants. An asterisk (*) denotes a write-in suggestion,
which has limited information on its usage distribution. Percentages in italics on the chart (#%) represent the percent of the
distribution that reported "Always"/"Often" (left) and "Rarely"/"Tried but gave up" (right).

Tool # users Med. % Usage distributioncode written

Amazon CodeWhisperer 50 5% 24% 61%

ChatGPT* 25 20% 59% 14%

GitHub Copilot 306 30.5% 46% 30%

TabNine 118 20% 27% 66%

Organization-speci�c code generation tool trained
on proprietary code

54 37% 29% 56%

Always (1+ times daily) Often (once daily) Sometimes (weekly) Rarely (monthly) Tried but gave up

Table 2: Participants’ motivations for using and not using AI programming assistants.

Motivation Distribution

A. For using
M1 To have an autocomplete or reduce the amount of keystrokes I make. 86% 6.2%

M2 To �nish my programming tasks faster. 76% 12%

M3 To skip needing to go online to �nd speci�c code snippets, programming
syntax, or API calls I’m aware of, but can’t remember.

68% 14%

M4 To discover potential ways or starting points to write a solution to a
problem I’m facing.

50% 24%

M5 To �nd an edge case for my code I haven’t considered. 36% 44%

B. For not using
M6 Code generation tools write code that doesn’t meet functional or non-

functional (e.g., security, performance) requirements that I need.
54% 34%

M7 It’s hard to control code generation tools to get code that I want. 48% 36%

M8 I spend too much time debugging or modifying code written by code
generation tools.

38% 45%

M9 I don’t think code generation tools provide helpful suggestions. 34% 46%

M10 I don’t want to use a tool that has access to my code. 30% 51%

M11 I write and use proprietary code that code generation tools haven’t seen
before and don’t generate.

28% 59%

M12 To prevent potential intellectual property infringement. 26% 66%

M13 I �nd the tool’s suggestions too distracting. 26% 51%

M14 I don’t understand the code written by code generation tools. 16% 76%

M15 I don’t want to use open-source code. 10% 89%

Very important Important Moderately important Slightly important Not important at all

not using them (M9). By having code that was not useful, users
engaged in the time-consuming process of modifying or debugging
code (M8). This was also a salient motivation, as 38% of participants
rated it as an important reason for not using these tools. Partici-
pants resonated the least with not understanding generated code
(M14) and not wanting to use open-source code (M15), as 76% and
89% of participants rated them as not important.

4.3 Successful use cases
Survey participants described situations where they were most
successful in using AI programming assistants. We found 10 types
of situations, which we describe below. We report the frequencies
of the codes using the multiplication symbol (⇥).

Repetitive code (78⇥). Participants were successful in using the
AI programming assistants to generate repetitive code, such as
"boilerplate [code]" (P165), "repetitive endpoints for crud" (P164), and
"college assignments" (P265) that had repeated functionality or were
common programming tasks. This was the most frequent code in
our data.

� Complete code that is highly repetitive but cannot be copied
and pasted directly." (P195)

Code with simple logic (68⇥). Consistent with prior work [56],
participants reported using AI programming assistants to success-
fully generate code with simple logic. This was the second most
mentioned code in the dataset. Examples include "small independent
utils functions" (P155), "sorting algorithms" (P177), and "small func-
tions like storing the training model into local �le systems" (P255).

A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges ICSE 2024, April 14–20, 2024, Lisbon, Portugal

Table 1: Participants’ self-reported usage of popular AI programming assistants. An asterisk (*) denotes a write-in suggestion,
which has limited information on its usage distribution. Percentages in italics on the chart (#%) represent the percent of the
distribution that reported "Always"/"Often" (left) and "Rarely"/"Tried but gave up" (right).

Tool # users Med. % Usage distributioncode written

Amazon CodeWhisperer 50 5% 24% 61%

ChatGPT* 25 20% 59% 14%

GitHub Copilot 306 30.5% 46% 30%

TabNine 118 20% 27% 66%

Organization-speci�c code generation tool trained
on proprietary code

54 37% 29% 56%

Always (1+ times daily) Often (once daily) Sometimes (weekly) Rarely (monthly) Tried but gave up

Table 2: Participants’ motivations for using and not using AI programming assistants.

Motivation Distribution

A. For using
M1 To have an autocomplete or reduce the amount of keystrokes I make. 86% 6.2%

M2 To �nish my programming tasks faster. 76% 12%

M3 To skip needing to go online to �nd speci�c code snippets, programming
syntax, or API calls I’m aware of, but can’t remember.

68% 14%

M4 To discover potential ways or starting points to write a solution to a
problem I’m facing.

50% 24%

M5 To �nd an edge case for my code I haven’t considered. 36% 44%

B. For not using
M6 Code generation tools write code that doesn’t meet functional or non-

functional (e.g., security, performance) requirements that I need.
54% 34%

M7 It’s hard to control code generation tools to get code that I want. 48% 36%

M8 I spend too much time debugging or modifying code written by code
generation tools.

38% 45%

M9 I don’t think code generation tools provide helpful suggestions. 34% 46%

M10 I don’t want to use a tool that has access to my code. 30% 51%

M11 I write and use proprietary code that code generation tools haven’t seen
before and don’t generate.

28% 59%

M12 To prevent potential intellectual property infringement. 26% 66%

M13 I �nd the tool’s suggestions too distracting. 26% 51%

M14 I don’t understand the code written by code generation tools. 16% 76%

M15 I don’t want to use open-source code. 10% 89%

Very important Important Moderately important Slightly important Not important at all

not using them (M9). By having code that was not useful, users
engaged in the time-consuming process of modifying or debugging
code (M8). This was also a salient motivation, as 38% of participants
rated it as an important reason for not using these tools. Partici-
pants resonated the least with not understanding generated code
(M14) and not wanting to use open-source code (M15), as 76% and
89% of participants rated them as not important.

4.3 Successful use cases
Survey participants described situations where they were most
successful in using AI programming assistants. We found 10 types
of situations, which we describe below. We report the frequencies
of the codes using the multiplication symbol (⇥).

Repetitive code (78⇥). Participants were successful in using the
AI programming assistants to generate repetitive code, such as
"boilerplate [code]" (P165), "repetitive endpoints for crud" (P164), and
"college assignments" (P265) that had repeated functionality or were
common programming tasks. This was the most frequent code in
our data.

� Complete code that is highly repetitive but cannot be copied
and pasted directly." (P195)

Code with simple logic (68⇥). Consistent with prior work [56],
participants reported using AI programming assistants to success-
fully generate code with simple logic. This was the second most
mentioned code in the dataset. Examples include "small independent
utils functions" (P155), "sorting algorithms" (P177), and "small func-
tions like storing the training model into local �le systems" (P255).

https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128

Max. concern

with generality

Max. concern
with context

Max. concern with
precision of measurement

I

IIII
IIII

IV IV

III

Field
Experiments

Field
Studies

Computer
Simulations

Formal
Theory

Sample
Surveys

Judgement
Tasks

Laboratory
Experiments

Experimental
Simulations

Particular Behavior SystemsUniversal Behavior Systems

Unobtrusive

Research
Operations

Obtrusive

Research
Operations

43

The E�ects of Update Interval and Reveal Method on
Writer Comfort in Synchronized Shared-Editors

Yen-Ting Yeh∗ Nikhita Joshi∗ Daniel Vogel
y6yeh@uwaterloo.ca nvjoshi@uwaterloo.ca dvogel@uwaterloo.ca

Cheriton School of Computer Science, Cheriton School of Computer Science, Cheriton School of Computer Science,
University of Waterloo University of Waterloo University of Waterloo

Canada Canada Canada

or

or

or

or
Manual

Sentence
delay

Character
delay

Time
delay

Real-time
Low

High

Update
strategy
controllability

(a) Writer’s view. (b) Observer’s view for different update strategies.

Figure 1: Strategies with di�erent update intervals: (a) writer’s view with a timer bar at the bottom; (b) observer’s view of
di�erent update strategies. Yellow and purple tint illustrate updated text within one interval. Update intervals are ordered top
to bottom by controllability (i.e., how much direct control the writer has over the update).
ABSTRACT
Synchronized shared-editors like Google Docs allow people to write
together, but there is no “privacy of writing” which can make writ-
ers feel uncomfortable. We propose methods to give writers more
control over when and how their edits are shown to collaborators
to increase comfort. These are in the form of di�erent update strate-
gies composed of an update interval and a reveal method. Results
from an experiment with simulated observers show that alternative
update strategies can be bene�cial, each having their own pros
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642330

and cons. A follow-up experiment with writer and observer pairs
validates these �ndings and shows that observers are amenable to
experiencing short delays caused by alternative update strategies.
Our work shows that synchronous writing tools should support
alternative update strategies that preserve both collaborator aware-
ness and writer comfort.

CCS CONCEPTS
• Human-centered computing ! Collaborative and social
computing systems and tools; Interaction techniques.

KEYWORDS
Collaborative writing, Writer comfort, Synchronized shared-editors
ACM Reference Format:
Yen-Ting Yeh, Nikhita Joshi, and Daniel Vogel. 2024. The E�ects of Update
Interval and Reveal Method on Writer Comfort in Synchronized Shared-
Editors. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3613904.3642330

menu control which had fewer navigation items. Two versions of the
information architecture were being tested (remember in Chapter 4
when we suggested you keep some of your old hypotheses in your back
pocket?). In test cell A, the “Profile” page had been combined with the
“Your Library” tab; in test cell B, “Radio” had been combined with the
“Browse” tab.

FIGURE 5-17.
Design treatments for Experiment 2 showing the “hamburger” navigation con-
trol versus the two versions of the tabbed navigation.

EXPERIMENT 2: INFORMATION ARCHITECTURE

Control Cell A Cell B

Search Home Home

Home Browse Browse

Browse Search Search

Radio Radio Your Library

Your Library Your Library Profile

Now, all of this was being tested on iOS and on Android, and this time
the new designs resulted in an improvement to second-week retention.
Cell A had the added benefit of also increasing another proxy metric
that the team cared about—and so it made sense to launch that one to
all users.

A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges ICSE 2024, April 14–20, 2024, Lisbon, Portugal

Table 1: Participants’ self-reported usage of popular AI programming assistants. An asterisk (*) denotes a write-in suggestion,
which has limited information on its usage distribution. Percentages in italics on the chart (#%) represent the percent of the
distribution that reported "Always"/"Often" (left) and "Rarely"/"Tried but gave up" (right).

Tool # users Med. % Usage distributioncode written

Amazon CodeWhisperer 50 5% 24% 61%

ChatGPT* 25 20% 59% 14%

GitHub Copilot 306 30.5% 46% 30%

TabNine 118 20% 27% 66%

Organization-speci�c code generation tool trained
on proprietary code

54 37% 29% 56%

Always (1+ times daily) Often (once daily) Sometimes (weekly) Rarely (monthly) Tried but gave up

Table 2: Participants’ motivations for using and not using AI programming assistants.

Motivation Distribution

A. For using
M1 To have an autocomplete or reduce the amount of keystrokes I make. 86% 6.2%

M2 To �nish my programming tasks faster. 76% 12%

M3 To skip needing to go online to �nd speci�c code snippets, programming
syntax, or API calls I’m aware of, but can’t remember.

68% 14%

M4 To discover potential ways or starting points to write a solution to a
problem I’m facing.

50% 24%

M5 To �nd an edge case for my code I haven’t considered. 36% 44%

B. For not using
M6 Code generation tools write code that doesn’t meet functional or non-

functional (e.g., security, performance) requirements that I need.
54% 34%

M7 It’s hard to control code generation tools to get code that I want. 48% 36%

M8 I spend too much time debugging or modifying code written by code
generation tools.

38% 45%

M9 I don’t think code generation tools provide helpful suggestions. 34% 46%

M10 I don’t want to use a tool that has access to my code. 30% 51%

M11 I write and use proprietary code that code generation tools haven’t seen
before and don’t generate.

28% 59%

M12 To prevent potential intellectual property infringement. 26% 66%

M13 I �nd the tool’s suggestions too distracting. 26% 51%

M14 I don’t understand the code written by code generation tools. 16% 76%

M15 I don’t want to use open-source code. 10% 89%

Very important Important Moderately important Slightly important Not important at all

not using them (M9). By having code that was not useful, users
engaged in the time-consuming process of modifying or debugging
code (M8). This was also a salient motivation, as 38% of participants
rated it as an important reason for not using these tools. Partici-
pants resonated the least with not understanding generated code
(M14) and not wanting to use open-source code (M15), as 76% and
89% of participants rated them as not important.

4.3 Successful use cases
Survey participants described situations where they were most
successful in using AI programming assistants. We found 10 types
of situations, which we describe below. We report the frequencies
of the codes using the multiplication symbol (⇥).

Repetitive code (78⇥). Participants were successful in using the
AI programming assistants to generate repetitive code, such as
"boilerplate [code]" (P165), "repetitive endpoints for crud" (P164), and
"college assignments" (P265) that had repeated functionality or were
common programming tasks. This was the most frequent code in
our data.

� Complete code that is highly repetitive but cannot be copied
and pasted directly." (P195)

Code with simple logic (68⇥). Consistent with prior work [56],
participants reported using AI programming assistants to success-
fully generate code with simple logic. This was the second most
mentioned code in the dataset. Examples include "small independent
utils functions" (P155), "sorting algorithms" (P177), and "small func-
tions like storing the training model into local �le systems" (P255).

Max. concern

with generality

Max. concern
with context

Max. concern with
precision of measurement

I

IIII
IIII

IV IV

III

Field
Experiments

Field
Studies

Computer
Simulations

Formal
Theory

Sample
Surveys

Judgement
Tasks

Laboratory
Experiments

Experimental
Simulations

Particular Behavior SystemsUniversal Behavior Systems

Unobtrusive

Research
Operations

Obtrusive

Research
Operations

44

The E�ects of Update Interval and Reveal Method on
Writer Comfort in Synchronized Shared-Editors

Yen-Ting Yeh∗ Nikhita Joshi∗ Daniel Vogel
y6yeh@uwaterloo.ca nvjoshi@uwaterloo.ca dvogel@uwaterloo.ca

Cheriton School of Computer Science, Cheriton School of Computer Science, Cheriton School of Computer Science,
University of Waterloo University of Waterloo University of Waterloo

Canada Canada Canada

or

or

or

or
Manual

Sentence
delay

Character
delay

Time
delay

Real-time
Low

High

Update
strategy
controllability

(a) Writer’s view. (b) Observer’s view for different update strategies.

Figure 1: Strategies with di�erent update intervals: (a) writer’s view with a timer bar at the bottom; (b) observer’s view of
di�erent update strategies. Yellow and purple tint illustrate updated text within one interval. Update intervals are ordered top
to bottom by controllability (i.e., how much direct control the writer has over the update).
ABSTRACT
Synchronized shared-editors like Google Docs allow people to write
together, but there is no “privacy of writing” which can make writ-
ers feel uncomfortable. We propose methods to give writers more
control over when and how their edits are shown to collaborators
to increase comfort. These are in the form of di�erent update strate-
gies composed of an update interval and a reveal method. Results
from an experiment with simulated observers show that alternative
update strategies can be bene�cial, each having their own pros
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642330

and cons. A follow-up experiment with writer and observer pairs
validates these �ndings and shows that observers are amenable to
experiencing short delays caused by alternative update strategies.
Our work shows that synchronous writing tools should support
alternative update strategies that preserve both collaborator aware-
ness and writer comfort.

CCS CONCEPTS
• Human-centered computing ! Collaborative and social
computing systems and tools; Interaction techniques.

KEYWORDS
Collaborative writing, Writer comfort, Synchronized shared-editors
ACM Reference Format:
Yen-Ting Yeh, Nikhita Joshi, and Daniel Vogel. 2024. The E�ects of Update
Interval and Reveal Method on Writer Comfort in Synchronized Shared-
Editors. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3613904.3642330

menu control which had fewer navigation items. Two versions of the
information architecture were being tested (remember in Chapter 4
when we suggested you keep some of your old hypotheses in your back
pocket?). In test cell A, the “Profile” page had been combined with the
“Your Library” tab; in test cell B, “Radio” had been combined with the
“Browse” tab.

FIGURE 5-17.
Design treatments for Experiment 2 showing the “hamburger” navigation con-
trol versus the two versions of the tabbed navigation.

EXPERIMENT 2: INFORMATION ARCHITECTURE

Control Cell A Cell B

Search Home Home

Home Browse Browse

Browse Search Search

Radio Radio Your Library

Your Library Your Library Profile

Now, all of this was being tested on iOS and on Android, and this time
the new designs resulted in an improvement to second-week retention.
Cell A had the added benefit of also increasing another proxy metric
that the team cared about—and so it made sense to launch that one to
all users.

A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges ICSE 2024, April 14–20, 2024, Lisbon, Portugal

Table 1: Participants’ self-reported usage of popular AI programming assistants. An asterisk (*) denotes a write-in suggestion,
which has limited information on its usage distribution. Percentages in italics on the chart (#%) represent the percent of the
distribution that reported "Always"/"Often" (left) and "Rarely"/"Tried but gave up" (right).

Tool # users Med. % Usage distributioncode written

Amazon CodeWhisperer 50 5% 24% 61%

ChatGPT* 25 20% 59% 14%

GitHub Copilot 306 30.5% 46% 30%

TabNine 118 20% 27% 66%

Organization-speci�c code generation tool trained
on proprietary code

54 37% 29% 56%

Always (1+ times daily) Often (once daily) Sometimes (weekly) Rarely (monthly) Tried but gave up

Table 2: Participants’ motivations for using and not using AI programming assistants.

Motivation Distribution

A. For using
M1 To have an autocomplete or reduce the amount of keystrokes I make. 86% 6.2%

M2 To �nish my programming tasks faster. 76% 12%

M3 To skip needing to go online to �nd speci�c code snippets, programming
syntax, or API calls I’m aware of, but can’t remember.

68% 14%

M4 To discover potential ways or starting points to write a solution to a
problem I’m facing.

50% 24%

M5 To �nd an edge case for my code I haven’t considered. 36% 44%

B. For not using
M6 Code generation tools write code that doesn’t meet functional or non-

functional (e.g., security, performance) requirements that I need.
54% 34%

M7 It’s hard to control code generation tools to get code that I want. 48% 36%

M8 I spend too much time debugging or modifying code written by code
generation tools.

38% 45%

M9 I don’t think code generation tools provide helpful suggestions. 34% 46%

M10 I don’t want to use a tool that has access to my code. 30% 51%

M11 I write and use proprietary code that code generation tools haven’t seen
before and don’t generate.

28% 59%

M12 To prevent potential intellectual property infringement. 26% 66%

M13 I �nd the tool’s suggestions too distracting. 26% 51%

M14 I don’t understand the code written by code generation tools. 16% 76%

M15 I don’t want to use open-source code. 10% 89%

Very important Important Moderately important Slightly important Not important at all

not using them (M9). By having code that was not useful, users
engaged in the time-consuming process of modifying or debugging
code (M8). This was also a salient motivation, as 38% of participants
rated it as an important reason for not using these tools. Partici-
pants resonated the least with not understanding generated code
(M14) and not wanting to use open-source code (M15), as 76% and
89% of participants rated them as not important.

4.3 Successful use cases
Survey participants described situations where they were most
successful in using AI programming assistants. We found 10 types
of situations, which we describe below. We report the frequencies
of the codes using the multiplication symbol (⇥).

Repetitive code (78⇥). Participants were successful in using the
AI programming assistants to generate repetitive code, such as
"boilerplate [code]" (P165), "repetitive endpoints for crud" (P164), and
"college assignments" (P265) that had repeated functionality or were
common programming tasks. This was the most frequent code in
our data.

� Complete code that is highly repetitive but cannot be copied
and pasted directly." (P195)

Code with simple logic (68⇥). Consistent with prior work [56],
participants reported using AI programming assistants to success-
fully generate code with simple logic. This was the second most
mentioned code in the dataset. Examples include "small independent
utils functions" (P155), "sorting algorithms" (P177), and "small func-
tions like storing the training model into local �le systems" (P255).

Max. concern

with generality

Max. concern
with context

Max. concern with
precision of measurement

I

IIII
IIII

IV IV

III

Field
Experiments

Field
Studies

Computer
Simulations

Formal
Theory

Sample
Surveys

Judgement
Tasks

Laboratory
Experiments

Experimental
Simulations

Particular Behavior SystemsUniversal Behavior Systems

Unobtrusive

Research
Operations

Obtrusive

Research
Operations

45

The E�ects of Update Interval and Reveal Method on
Writer Comfort in Synchronized Shared-Editors

Yen-Ting Yeh∗ Nikhita Joshi∗ Daniel Vogel
y6yeh@uwaterloo.ca nvjoshi@uwaterloo.ca dvogel@uwaterloo.ca

Cheriton School of Computer Science, Cheriton School of Computer Science, Cheriton School of Computer Science,
University of Waterloo University of Waterloo University of Waterloo

Canada Canada Canada

or

or

or

or
Manual

Sentence
delay

Character
delay

Time
delay

Real-time
Low

High

Update
strategy
controllability

(a) Writer’s view. (b) Observer’s view for different update strategies.

Figure 1: Strategies with di�erent update intervals: (a) writer’s view with a timer bar at the bottom; (b) observer’s view of
di�erent update strategies. Yellow and purple tint illustrate updated text within one interval. Update intervals are ordered top
to bottom by controllability (i.e., how much direct control the writer has over the update).
ABSTRACT
Synchronized shared-editors like Google Docs allow people to write
together, but there is no “privacy of writing” which can make writ-
ers feel uncomfortable. We propose methods to give writers more
control over when and how their edits are shown to collaborators
to increase comfort. These are in the form of di�erent update strate-
gies composed of an update interval and a reveal method. Results
from an experiment with simulated observers show that alternative
update strategies can be bene�cial, each having their own pros
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642330

and cons. A follow-up experiment with writer and observer pairs
validates these �ndings and shows that observers are amenable to
experiencing short delays caused by alternative update strategies.
Our work shows that synchronous writing tools should support
alternative update strategies that preserve both collaborator aware-
ness and writer comfort.

CCS CONCEPTS
• Human-centered computing ! Collaborative and social
computing systems and tools; Interaction techniques.

KEYWORDS
Collaborative writing, Writer comfort, Synchronized shared-editors
ACM Reference Format:
Yen-Ting Yeh, Nikhita Joshi, and Daniel Vogel. 2024. The E�ects of Update
Interval and Reveal Method on Writer Comfort in Synchronized Shared-
Editors. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3613904.3642330

menu control which had fewer navigation items. Two versions of the
information architecture were being tested (remember in Chapter 4
when we suggested you keep some of your old hypotheses in your back
pocket?). In test cell A, the “Profile” page had been combined with the
“Your Library” tab; in test cell B, “Radio” had been combined with the
“Browse” tab.

FIGURE 5-17.
Design treatments for Experiment 2 showing the “hamburger” navigation con-
trol versus the two versions of the tabbed navigation.

EXPERIMENT 2: INFORMATION ARCHITECTURE

Control Cell A Cell B

Search Home Home

Home Browse Browse

Browse Search Search

Radio Radio Your Library

Your Library Your Library Profile

Now, all of this was being tested on iOS and on Android, and this time
the new designs resulted in an improvement to second-week retention.
Cell A had the added benefit of also increasing another proxy metric
that the team cared about—and so it made sense to launch that one to
all users.

A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges ICSE 2024, April 14–20, 2024, Lisbon, Portugal

Table 1: Participants’ self-reported usage of popular AI programming assistants. An asterisk (*) denotes a write-in suggestion,
which has limited information on its usage distribution. Percentages in italics on the chart (#%) represent the percent of the
distribution that reported "Always"/"Often" (left) and "Rarely"/"Tried but gave up" (right).

Tool # users Med. % Usage distributioncode written

Amazon CodeWhisperer 50 5% 24% 61%

ChatGPT* 25 20% 59% 14%

GitHub Copilot 306 30.5% 46% 30%

TabNine 118 20% 27% 66%

Organization-speci�c code generation tool trained
on proprietary code

54 37% 29% 56%

Always (1+ times daily) Often (once daily) Sometimes (weekly) Rarely (monthly) Tried but gave up

Table 2: Participants’ motivations for using and not using AI programming assistants.

Motivation Distribution

A. For using
M1 To have an autocomplete or reduce the amount of keystrokes I make. 86% 6.2%

M2 To �nish my programming tasks faster. 76% 12%

M3 To skip needing to go online to �nd speci�c code snippets, programming
syntax, or API calls I’m aware of, but can’t remember.

68% 14%

M4 To discover potential ways or starting points to write a solution to a
problem I’m facing.

50% 24%

M5 To �nd an edge case for my code I haven’t considered. 36% 44%

B. For not using
M6 Code generation tools write code that doesn’t meet functional or non-

functional (e.g., security, performance) requirements that I need.
54% 34%

M7 It’s hard to control code generation tools to get code that I want. 48% 36%

M8 I spend too much time debugging or modifying code written by code
generation tools.

38% 45%

M9 I don’t think code generation tools provide helpful suggestions. 34% 46%

M10 I don’t want to use a tool that has access to my code. 30% 51%

M11 I write and use proprietary code that code generation tools haven’t seen
before and don’t generate.

28% 59%

M12 To prevent potential intellectual property infringement. 26% 66%

M13 I �nd the tool’s suggestions too distracting. 26% 51%

M14 I don’t understand the code written by code generation tools. 16% 76%

M15 I don’t want to use open-source code. 10% 89%

Very important Important Moderately important Slightly important Not important at all

not using them (M9). By having code that was not useful, users
engaged in the time-consuming process of modifying or debugging
code (M8). This was also a salient motivation, as 38% of participants
rated it as an important reason for not using these tools. Partici-
pants resonated the least with not understanding generated code
(M14) and not wanting to use open-source code (M15), as 76% and
89% of participants rated them as not important.

4.3 Successful use cases
Survey participants described situations where they were most
successful in using AI programming assistants. We found 10 types
of situations, which we describe below. We report the frequencies
of the codes using the multiplication symbol (⇥).

Repetitive code (78⇥). Participants were successful in using the
AI programming assistants to generate repetitive code, such as
"boilerplate [code]" (P165), "repetitive endpoints for crud" (P164), and
"college assignments" (P265) that had repeated functionality or were
common programming tasks. This was the most frequent code in
our data.

� Complete code that is highly repetitive but cannot be copied
and pasted directly." (P195)

Code with simple logic (68⇥). Consistent with prior work [56],
participants reported using AI programming assistants to success-
fully generate code with simple logic. This was the second most
mentioned code in the dataset. Examples include "small independent
utils functions" (P155), "sorting algorithms" (P177), and "small func-
tions like storing the training model into local �le systems" (P255).

46

Max. concern

with generality

Max. concern
with context

Max. concern with
precision of measurement

I

IIII
IIII

IV IV

III

Field
Experiments

Field
Studies

Computer
Simulations

Formal
Theory

Sample
Surveys

Judgement
Tasks

Laboratory
Experiments

Experimental
Simulations

Particular Behavior SystemsUniversal Behavior Systems

Unobtrusive

Research
Operations

Obtrusive

Research
Operations

M
cG

ra
th

, J
. E

. (
19

81
).

Di
lem

m
at

ics
: T

he
 s

tu
dy

 o
f r

es
ea

rc
h

ch
oi

ce
s

an
d

di
lem

m
as

. A
m

er
ica

n
Be

ha
vio

ra
l S

cie
nt

ist
, 2

5(
2)

,
17

9-
21

0.

M
cG

ra
th

, J
. E

. (
19

95
).

M
et

ho
do

lo
gy

 m
at

te
rs

: D
oi

ng
 re

se
ar

ch
 in

 th
e

be
ha

vio
ra

l a
nd

 s
oc

ial
 s

cie
nc

es
. I

n
Re

ad
in

gs
 in

 H
um

an
–

Co
m

pu
te

r I
nt

er
ac

tio
n

(p
p.

 1
52

-1
69

).
M

or
ga

n
Ka

uf
m

an
n.

Strategies for
Empirical research

The E�ects of Update Interval and Reveal Method on
Writer Comfort in Synchronized Shared-Editors

Yen-Ting Yeh∗ Nikhita Joshi∗ Daniel Vogel
y6yeh@uwaterloo.ca nvjoshi@uwaterloo.ca dvogel@uwaterloo.ca

Cheriton School of Computer Science, Cheriton School of Computer Science, Cheriton School of Computer Science,
University of Waterloo University of Waterloo University of Waterloo

Canada Canada Canada

or

or

or

or
Manual

Sentence
delay

Character
delay

Time
delay

Real-time
Low

High

Update
strategy
controllability

(a) Writer’s view. (b) Observer’s view for different update strategies.

Figure 1: Strategies with di�erent update intervals: (a) writer’s view with a timer bar at the bottom; (b) observer’s view of
di�erent update strategies. Yellow and purple tint illustrate updated text within one interval. Update intervals are ordered top
to bottom by controllability (i.e., how much direct control the writer has over the update).
ABSTRACT
Synchronized shared-editors like Google Docs allow people to write
together, but there is no “privacy of writing” which can make writ-
ers feel uncomfortable. We propose methods to give writers more
control over when and how their edits are shown to collaborators
to increase comfort. These are in the form of di�erent update strate-
gies composed of an update interval and a reveal method. Results
from an experiment with simulated observers show that alternative
update strategies can be bene�cial, each having their own pros
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642330

and cons. A follow-up experiment with writer and observer pairs
validates these �ndings and shows that observers are amenable to
experiencing short delays caused by alternative update strategies.
Our work shows that synchronous writing tools should support
alternative update strategies that preserve both collaborator aware-
ness and writer comfort.

CCS CONCEPTS
• Human-centered computing ! Collaborative and social
computing systems and tools; Interaction techniques.

KEYWORDS
Collaborative writing, Writer comfort, Synchronized shared-editors
ACM Reference Format:
Yen-Ting Yeh, Nikhita Joshi, and Daniel Vogel. 2024. The E�ects of Update
Interval and Reveal Method on Writer Comfort in Synchronized Shared-
Editors. In Proceedings of the CHI Conference on Human Factors in Computing
Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3613904.3642330

menu control which had fewer navigation items. Two versions of the
information architecture were being tested (remember in Chapter 4
when we suggested you keep some of your old hypotheses in your back
pocket?). In test cell A, the “Profile” page had been combined with the
“Your Library” tab; in test cell B, “Radio” had been combined with the
“Browse” tab.

FIGURE 5-17.
Design treatments for Experiment 2 showing the “hamburger” navigation con-
trol versus the two versions of the tabbed navigation.

EXPERIMENT 2: INFORMATION ARCHITECTURE

Control Cell A Cell B

Search Home Home

Home Browse Browse

Browse Search Search

Radio Radio Your Library

Your Library Your Library Profile

Now, all of this was being tested on iOS and on Android, and this time
the new designs resulted in an improvement to second-week retention.
Cell A had the added benefit of also increasing another proxy metric
that the team cared about—and so it made sense to launch that one to
all users.

A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges ICSE 2024, April 14–20, 2024, Lisbon, Portugal

Table 1: Participants’ self-reported usage of popular AI programming assistants. An asterisk (*) denotes a write-in suggestion,
which has limited information on its usage distribution. Percentages in italics on the chart (#%) represent the percent of the
distribution that reported "Always"/"Often" (left) and "Rarely"/"Tried but gave up" (right).

Tool # users Med. % Usage distributioncode written

Amazon CodeWhisperer 50 5% 24% 61%

ChatGPT* 25 20% 59% 14%

GitHub Copilot 306 30.5% 46% 30%

TabNine 118 20% 27% 66%

Organization-speci�c code generation tool trained
on proprietary code

54 37% 29% 56%

Always (1+ times daily) Often (once daily) Sometimes (weekly) Rarely (monthly) Tried but gave up

Table 2: Participants’ motivations for using and not using AI programming assistants.

Motivation Distribution

A. For using
M1 To have an autocomplete or reduce the amount of keystrokes I make. 86% 6.2%

M2 To �nish my programming tasks faster. 76% 12%

M3 To skip needing to go online to �nd speci�c code snippets, programming
syntax, or API calls I’m aware of, but can’t remember.

68% 14%

M4 To discover potential ways or starting points to write a solution to a
problem I’m facing.

50% 24%

M5 To �nd an edge case for my code I haven’t considered. 36% 44%

B. For not using
M6 Code generation tools write code that doesn’t meet functional or non-

functional (e.g., security, performance) requirements that I need.
54% 34%

M7 It’s hard to control code generation tools to get code that I want. 48% 36%

M8 I spend too much time debugging or modifying code written by code
generation tools.

38% 45%

M9 I don’t think code generation tools provide helpful suggestions. 34% 46%

M10 I don’t want to use a tool that has access to my code. 30% 51%

M11 I write and use proprietary code that code generation tools haven’t seen
before and don’t generate.

28% 59%

M12 To prevent potential intellectual property infringement. 26% 66%

M13 I �nd the tool’s suggestions too distracting. 26% 51%

M14 I don’t understand the code written by code generation tools. 16% 76%

M15 I don’t want to use open-source code. 10% 89%

Very important Important Moderately important Slightly important Not important at all

not using them (M9). By having code that was not useful, users
engaged in the time-consuming process of modifying or debugging
code (M8). This was also a salient motivation, as 38% of participants
rated it as an important reason for not using these tools. Partici-
pants resonated the least with not understanding generated code
(M14) and not wanting to use open-source code (M15), as 76% and
89% of participants rated them as not important.

4.3 Successful use cases
Survey participants described situations where they were most
successful in using AI programming assistants. We found 10 types
of situations, which we describe below. We report the frequencies
of the codes using the multiplication symbol (⇥).

Repetitive code (78⇥). Participants were successful in using the
AI programming assistants to generate repetitive code, such as
"boilerplate [code]" (P165), "repetitive endpoints for crud" (P164), and
"college assignments" (P265) that had repeated functionality or were
common programming tasks. This was the most frequent code in
our data.

� Complete code that is highly repetitive but cannot be copied
and pasted directly." (P195)

Code with simple logic (68⇥). Consistent with prior work [56],
participants reported using AI programming assistants to success-
fully generate code with simple logic. This was the second most
mentioned code in the dataset. Examples include "small independent
utils functions" (P155), "sorting algorithms" (P177), and "small func-
tions like storing the training model into local �le systems" (P255).

47

Max. concern

with generality

Max. concern
with context

Max. concern with
precision of measurement

I

IIII
IIII

IV IV

III

Field
Experiments

Field
Studies

Computer
Simulations

Formal
Theory

Sample
Surveys

Judgement
Tasks

Laboratory
Experiments

Experimental
Simulations

Particular Behavior SystemsUniversal Behavior Systems

Unobtrusive

Research
Operations

Obtrusive

Research
Operations

M
cG

ra
th

, J
. E

. (
19

81
).

Di
lem

m
at

ics
: T

he
 s

tu
dy

 o
f r

es
ea

rc
h

ch
oi

ce
s

an
d

di
lem

m
as

. A
m

er
ica

n
Be

ha
vio

ra
l S

cie
nt

ist
, 2

5(
2)

,
17

9-
21

0.

M
cG

ra
th

, J
. E

. (
19

95
).

M
et

ho
do

lo
gy

 m
at

te
rs

: D
oi

ng
 re

se
ar

ch
 in

 th
e

be
ha

vio
ra

l a
nd

 s
oc

ial
 s

cie
nc

es
. I

n
Re

ad
in

gs
 in

 H
um

an
–

Co
m

pu
te

r I
nt

er
ac

tio
n

(p
p.

 1
52

-1
69

).
M

or
ga

n
Ka

uf
m

an
n.

Strategies for
Empirical research

• No single method is

perfect

• Use more than one

research approach to

address the same

question and

triangulate the findings

• Acknowledge

limitations of your

method and point to the

next direction that you

think needed the most

Exercise: Variable relationships and empirical research strategies

Take 10 minutes to think of one variable-relationship in your research.

Select an empirical strategy to inspect this relationship.

If your research doesn’t use empirical validation, do this task as a

thought experiment

Together with a person next to you, take 20 minutes per person to

discuss:

• Are the selected empirical strategy suitable to investigate the

relationship?

• What are strengths and weaknesses of this strategy? Are the

weaknesses strong concern for this particular research problem?

• What other strategies might be relevant?

48

Miro

Max. concern

with generality

Max. concern
with context

Max. concern with
precision of measurement

I

IIII
IIII

IV IV

III

Field
Experiments

Field
Studies

Computer
Simulations

Formal
Theory

Sample
Surveys

Judgement
Tasks

Laboratory
Experiments

Experimental
Simulations

Particular Behavior SystemsUniversal Behavior Systems

Unobtrusive

Research
Operations

Obtrusive

Research
Operations

• Descriptive research: “Y happened”
• Relational research: “When Y happens, X

also happens”
• Experimental research: “Y happens

because of X”

49

Joseph E. McGrath. 1995. Methodology matters: doing research in the behavioral
and social sciences. In Readings in Human-computer interaction, Ronald M.
Baecker, Jonathan Grudin, William A. S. Buxton, and Saul Greenberg (Eds.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA 152-169.

�� ���������� ���������

��
�� ���������

� ���� ��	��
�����

���� ���
��� ��
�����

��
���
���	������

��!������"�# ��� �����!#��#�������#������#

����������# �����

�#� ���(��(#��"(����#� (� �&"(��(����"(� ��(�(�%��� (��(�'(�� ��� (�%�����#���"�(����%�����(
�
 �#��(��	��(��
��#�
 �#�(���(� ���� ��(��
�#� ���� �(���(��
 �#��(��
�#

�%����(���(�
 �#��(��	��#�
 �#��(�!$���(���(�%����(��
��#

1

Max. concern

with generality

Max. concern
with context

Max. concern with
precision of measurement

I

IIII
IIII

IV IV

III

Field
Experiments

Field
Studies

Computer
Simulations

Formal
Theory

Sample
Surveys

Judgement
Tasks

Laboratory
Experiments

Experimental
Simulations

Particular Behavior SystemsUniversal Behavior Systems

Unobtrusive

Research
Operations

Obtrusive

Research
Operations

����£ĩ ��¾Ó�5���ĩ��
ĩ ?A	A�?B��	#M�.)A7.$M��ĩğ����ĩ���ĩ')��ĩ�������ĩK�ĩ�����đ*ĩ��ĩL�
��ģ
�����ĩ ��ĩ �ĩ�����ĩ���%�$�ĩ'��Ñ��ĩ �ĩ � ěĩ��ĩz
�E�����{ĩ�����ĩ���Ú�����*ĩ ��ĩ�� �� !���ĩ
hÄ���¤ĩ ®	ĩ��Ðï�5���ĩ ���ĩ��@C8�ID�)�MC��M�&3
�DM ��ĩ�ĩ�7���Gĩ��ĩ ��� 7���ĩ ��ĩt^�ĩ ���M
���ĩ��	ĩ!�ĩ�����ĠrQ"`�����ĩ	�$�����ĩ2��������Õ�\ĩ�
ĩ���Ě������ĩ¯�ĩ�i�ĩ��ĩ+B��Q ��ĩ
Ē��ĩ����ĩ�&����ĩ���ĩ��ĩ�d��ĩ �i�ĩ���÷�ĩ ��ĩ�������ĩT��ĩ2��ĩ�
�E�M
����ĩ&�U��ĩ��
ĩ	��t$!�����ĩ�en#�ĩ��ĩ#ĩ��f�Á�ĩ��ĩ�����
��ĩ��ĩ�����	ĩ9
)�'�L�A�.)�M���ĩ

�����ĩ��ĩ�oô��	�o��ĩ���ĩ ��ĩ#��������ĩ��ĩ|��6��}ĩ�����ĩ�±!���ĩ ��ð!Đ!���ĩ x�+^��ĩ u�ĩ

©ö��ĩ���ĩ	���!��ĩ'�+�ĩ�µ`��6ĩ ��������ĩ��ĩ =�)°ĩ��I�f*ĩ�ĩ�)6�	Ĥ
&�	?J;�*��M &
+�4J$	D�+��M �.+E:.$%�)�M U�	ĩ��?D; �JF�+�M �&4��A� �
Yĩ���ĩ�#���ĩ

�[ĩ ����Z��ĩ ��ĩ ~����I�ĩ ��ĩ x����ĩ ���Ö��ĩ ��	ĩ ���¶����áĩ ����������ĩ Ć����2����#���ĩ
�� ��
ĩ�&%������ĩ�ñ�
����� S ĩ

��%	A�.,?M +B�ĩ��,�	�Û�\����ĩ	�����ĩ����ĩ �ĩ	�ĩ"�ēĩ���ĩ �n�Þ������ĩ��ĩ��
��v�ĩ
�/(5	<�?.*M ����-!6J�@�M ����ĩ �
�ĩ �����	�ĩ ��ĩ ��(3�5���ĩ ��ĩ)�;��ĩ ��ĩ 'Ab�=ĩ �Ò�ĩ
û���.
½��pĩ�;�ĩ ������ĩ
���r!���ĩ�����ĩu�ĩ��Ü���ĩ��ĩ"�ĩ�$ĩ��
�ĩ�����$��ĩ�Åĩĕ�ĩ��gVĩ
�����ĩ �3��
ĩ ��	y�ĩ «���ĩ ¹����$�����ĩ �������ĩ �C
��ĩ ���ĩ ��ĩ ��������ĩ ��ĩ ���ĩ *�����ĩ
�è��üĩ �Ċ�	ġ¢ĩ ���ĩ �>�ĩ �����$��ĩ ,��ĩ =�L�ĩ��<�ĩ ä����q�	Oĩ ��	ĩ ����ĩ ���ĩ G���
	�	ĩ ��ĩ
��Ą��ĩ�0ĩ���ĩ�É���E���ĩ��ĩ �é��
���ĩ -�����ĩ���ĩ ������e��ĩ �����Àĩ�	�ø��	���ĩ����.¸�����¥ĩ
���	3*%7 �?��ĩ(���ĩ·��jĩ)������	ĩ�
ĩ2���������	�ĩ��	ĩĔ��ĩ�
�ĩ ��ĩ�����Ħ
ċa��ĩ ��Ĝ�
���º�ĩ m0�ĩ �
ĩ �4s���	���ĩ ���ĩ ���ĩ�����å���ĩ �1ĩ �� �
�� ĩ -�C���ĩ �
�ĩ ��&��g��ĩ
��ßà�	ĩ �����%����îčĩĝ�
�������9¦ĩ ;�	ĩ -�Nĩ ��ĩ ���ĩ mK�
ĩ 1���7
��ĩ��ĩ �>�ĩ �����hĩ �A�ĩ�$7

�����4�ĩ��ĩ�?�ĩ�����×���ĩ��ĩ��������ĩ8���"���ĩ	���3	�4�ĩ�3	ĩ�������	���ĩ��q�����ć��ĩVWĩ
�?��ĩ ���ĩ ����ĩ 8�þĩ (���ĩ �����	ĩ ��9ĩ ����p��Pĩ �ÿĩ"����ĩ ���ĩ��w�ĩ -�Gĩ����ĩ �����	ĩ �ò9ĩ
����H�����ĩ�
ĩ �+B�
"!��ĩ ��d�ĩ ���ĩ �����j¡ĩ §�æ�³�����ĩ ������ĩ �>�ĩ ����
Ø����ĩ �
ĩ ����ħ
������êĩ /��"��kĩ&)������ĩ ó�ĩ K�ĩ Ç���ĩ ����ĩ ��_�ĩ X�%��	���ĩ .l	ĩ �l	����	���ĩĞ�Ā�M
�/���N�ĩ �������ĩ Ê�ĩ/��D	���ĩ ��ĩ���ĩ J_b�Wĩ ��ĩ 8�����ĩ ����
ĩ
���L���ĩ 1����
��ĩ ,��ĩ'�
�ĩ���ĩ
��v����ĩ ¿�
�»��yĩ �(�)JË��ĩ����
������ĩ�H�ĩ�ĩù�H�ĩ��ĩ���ĩ)������ĩ��ĩ

ª��Čĩ �0ĩ �) ā���ĩ �0ĩ,!�ĩ�����
ĩ'���ĩ	�#�ĩ "�ėĩ����
��ĩ�[ĩ,�ĩ�<���
�(ĩ%
õÂ��ĩ Ę��ĩ
�Fú@���ĢÃĩ !�) ��ĎÎ�	��������ĩ 	�&�Ùë�ĩ ���Ìĩ Ĉ����)�s��ĩ �����	Z
��a��ĩ ��ĩ
�cJ@�
ĩ�����% ���ĩ�Ăĩ �����$6�ĩTA�ĩ$��	�
ĩ�]��Ý	ĩDY<%ĩ�4ĩF����ĩ ďÏ��È(Oĩ �@��ĩ
�]�ĩ ă���´¼Íĩ%ą����ĉ�ĩ ��D�ĩ �ĩ ��
��������¨ĩ ������ĩ��"���ĩ X����	�ĩ �����c.��ĩ 	%$M
G�=��M��ç��ìĨĩ ���#�Pĩ #�	ĩ��Ô5��� ĩ

�+(61&7��7
�����#��	*

�
(��$* ��)"/.#'0427
��*����)� !��*��	*

%�����*&�����*

!�'��"���*

������7

���!�#/.p

+� �0�'#,p

�"�����#�p
,5,1�!,p

������7

,2�-/�/�4�p �$#��)/3��p

)B=PSK=O6p)YSU=ZbF=_p

*6db=ZO`p +=I6bGSQ`p

(O@SGOAp �TP:=Udi7Ip
`m`d=K`p ,m`e=Lap
�=�p@	p o=
@��p
DjM6P� ?G=J<p
;SNUkc=Zp gE=SYn�p
`m`d=K`p

!�/�%��
&�(���� p

!S<=`p S>p
/[=6dK=Pcp

�SLV6ZG`SPp
/=9COGXh=`p

+=`=6[:Cp
,f\6d=@G=`p
�=�@p
I68S[6dS^p
=lW=]HK=Rb�p

5

McGrath, J. E. (1995). Methodology matters: Doing research in the behavioral and social sciences. In Readings in Human–Computer Interaction (pp. 152-169). Morgan Kaufmann.

https://doi.org/10.1016/B978-0-08-051574-8.50019-4

Take 5 minutes to answer debrief questions:

This link is also on the talk webpage:
chatw.ch/research-thinking

Summary

50

Max. concern

with generality

Max. concern
with context

Max. concern with
precision of measurement

I

IIII
IIII

IV IV

III

Field
Experiments

Field
Studies

Computer
Simulations

Formal
Theory

Sample
Surveys

Judgement
Tasks

Laboratory
Experiments

Experimental
Simulations

Particular Behavior SystemsUniversal Behavior Systems

Unobtrusive

Research
Operations

Obtrusive

Research
Operations

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Velloso and Hornbæk

EfficiencyUsability

Effectiveness

Satisfaction

Efficiency Usability
perception

Effectiveness

Satisfaction

(a) (b)

Figure 7: Di�erent theoretical assumptions for the relation-
ship between usability, e�ectiveness, e�ciency, and satisfac-
tion. Is usability the cause or the e�ect?

the bottom two: a sense of understanding of causal mechanisms
and control of events. Among the forms that theory can take, also
identi�ed by Reynolds—set of laws, axiomatic, and causal process—
we focus on the latter. However, this focus does not restrict us to
any particular kind of evidence. Both quantitative and qualitative
data are compatible with causal modelling, as are experimental and
observational studies. They are useful to structure claims regard-
less of their source and strength of evidence. A DAG can represent
assumptions derived from your intuition as well as those with sub-
stantial evidence reported in previous works; the reasoning behind
them can be elaborated in the accompanying verbal explanation.

Causal models can be used to theorise both about the problem
space and the solution space. You can use a DAG to formalise your
assumptions about the causes of a problem (e.g. Figure 14) as well
as to predict the e�ects of a new interactive solution (e.g. Figure 5).
Their modular structure also invites explorations within the theory
space—by extending them, removing nodes, expanding mediating
pathways, providing new explanations, and so on. To illustrate their
versatility, Table 2 exempli�es the uses of causal models at di�erent
stages of the research lifecycle. In the next sections, we provide
a practical overview of opportunities and challenges for DAGs in
HCI theory-building and make the case for their usefulness in both
quantitative and qualitative research.

4 Ten opportunities for HCI theorising with
causal models

So far, we have provided a general structure for how to theorise
using causal models. Now, we o�er reasons for why this is a good
theorising tactic for HCI research.

We use several examples from the literature to discuss the follow-
ing opportunities for causal models as conceptual representations of
theoretical claims: they make theoretical assumptions explicit, they
reveal the theoretical value of a research question, they help decide
which variables to include in a statistical model, they give mean-
ing to regression coe�cients, they allow for an easier extension
by future work, they reveal testable implications, they highlight
where interventions should focus, they shift the focus away from
null hypothesis testing towards the data-generating process behind
the phenomenon of interest, and they help identify limitations in

Figure 8: (a) DAG for Fitts’s Law assuming that movement
time (MT) is determined by the index of di�culty (ID) and
the input device (Dev). Once you stratify by ID, any observed
di�erences in MT are due to the device. (b) A di�erent DAG
for Fitts’s Law: movement time depends on ID and the user’s
experience with the device. Once you stratify by ID, any ob-
served di�erences in MT could be due to the device or the
user.

the study design. These opportunities can be leveraged at multiple
stages of the research lifecycle depicted in Table 2.

4.1 Make your theoretical assumptions explicit
Through their graphical form, DAGs make explicit claims about the
direction and nature of the relationship between variables. These
assumptions have consequences for the appropriateness of the
application of theory. For example, e�ectiveness, e�ciency, and sat-
isfaction are elements of the user experience commonly associated
with the concept of usability and, as such, are often used as usability
measures [27]. This implies the DAG in Figure 7(a). However, an-
other potential theoretical assumption for this relationship is that
after experiencing an e�ective, e�cient, and satisfactory interface,
users will report the perception of high usability, as depicted in
the DAG in Figure 7(b). This distinction has important theoretical
consequences—it is the di�erence between using these measures
to estimate a latent usability experience or using them to predict
usability scores.

A more contentious example is in the theoretical discussions
around the appropriate use of Fitts’s law for measuring the perfor-
mance of pointing devices. Fitts’s law models the movement time
to reach a target as a function of the distance from the pointer to
the target and the size of the target. Beyond the discussions around
its many mathematical formulations, there is also controversy in
the theoretical assumptions behind them.

The most popular account, as popularised by MacKenzie [44] and
made o�cial in the ISO 9241-9 standard [24] for evaluating pointing
devices, says that once the index of di�culty (a logarithmic measure
combining the distance and the width) is controlled, performance
di�erences are due to the device performance. The DAG in Figure
8(a) illustrates this.

However, as Drewes points out [19], Fitts’s original idea was that
pointing performance is limited by one’s information processing
capacity. In this account, any di�erences in performance are due to
the user: any device e�ect being due to lack of experience in using it
rather than any property inherent to the device itself. This implies

8

‘corroborated’, ‘well-confirmed’ or otherwise justifiable
within the framework of contemporary epistemology.

With this definition, the benefit of problem-solving is that it
allows covering a wider scope of research than previous ac-
counts, which have been restricted to certain disciplines,
topics, or approaches (e.g., research-through-design [53],
interaction criticism [2], usability science [15], or interac-
tion science [21]). However, because Laudan developed his
view with natural and social sciences in mind, he missed
design and engineering contributions. Extending Laudan’s
typology to propose that research problems in HCI include
not only empirical and conceptual but also constructive
problems, we present the first typology developed to en-
compass most recognised research problems in HCI. It is
now possible to describe research contributions regardless
of the background traditions, paradigms, or methods. The
seemingly multi- or, rather, hyper-disciplinary field is—in
the end—about solving three types of problem. This reduc-
es the number of dimensions dramatically when one is talk-
ing about HCI.

Having built the conceptual foundation, we return to answer
four fundamental questions: 1) What is HCI research, 2)
what is good HCI research, 3) are we doing a good job as a
field, and 4) could we do an even better job?

We aim to show through these discussions that Laudan's
problem-solving view is not just ‘solutionism’. It offers a
useful, timeless, and actionable non-disciplinary stance to
HCI. Instead of asking whether research subscribes to the
‘right’ approach, a system is ‘novel’, or a theory is ‘true’,
one asks how it advances our ability to solve important
problems relevant to human use of computers. Are we ad-
dressing the right problems? Are we solving them well?
The view helps us contribute to some longstanding debates
about HCI. Moreover, we show that the view is generative.
We provide ideas on how to apply it as a thinking tool.
Problem-solving capacity can be analysed for individual
papers or even whole sub-topics and the field at large. It al-

so works as a springboard for generating ideas to improve
research agendas.

We conclude on a positive note by arguing that HCI is nei-
ther unscientific nor non-scientific (as some have claimed
[40]) or in deep crisis [25]. Such views do not recognise the
kinds of contributions being made. Instead, on many
counts, HCI has improved problem-solving capacity in hu-
man use of computing remarkably and continues to do so.
However, as we show, these contributions tend to focus on
empirical and constructive problem types. In a contrast to
calls for HCI to be more scientific [21], interdisciplinary
[3], hard [36], soft [9], or rigorous [40], the systematic
weakness of HCI is, in fact, our inability to produce con-
ceptual contributions (theories, methods, concepts, and
principles) that link empirical and constructive research.

THREE TYPES OF RESEARCH PROBLEM IN HCI
Our first point is that the key to understanding HCI as prob-
lem-solving is the recognition that its research efforts clus-
ter around a few recurring problem types. We effectively
‘collapse’ the (apparent) multiplicity of research efforts un-
der a few problem types. This not only simplifies HCI but
also transcends some biasing presumptions arising from
methodology, theory, or discipline. One can now see simi-
larities and differences between, say, an observational study
of a novel technology and a rigorous laboratory experiment,
without being bound by their traditions.

In this section, we 1) introduce Laudan’s notion of research
problem briefly, 2) extend his typology to cover engineer-
ing and design contributions to HCI, and 3) argue that con-
tributions in HCI can be classified via this typology.

Laudan originally distinguished only two types of research
problem—empirical and conceptual. These are defined in
terms of absence or inabilities to understand or achieve
some ends. As we argue below, the two types are applicable
also to HCI. However, to not let design ‘off the hook’, HCI
should cover engineering and design contributions. This as-
pect is clear in almost all definitions of HCI as a field, in-

Figure 1. This paper analyses HCI research as problem-solving. Scientific progress in HCI is defined as improvements in our

ability to solve important problems related to human use of computing. Firstly, a subject of enquiry is defined and its im-
provement potential analysed. Then, a research problem is formulated. The outcome of the research (i.e., the solution) is evalu-

ated for its contribution to problem-solving capacity defined in terms of five criteria.

ing systems research: “simple metrics can produce simplistic
progress that is not necessarily meaningful.” The central
question is thus: what is an evaluation? And, how do we re-
flect and evaluate such complex toolkit research?
METHODOLOGY
This paper elucidates evaluation practices observed in mod-
ern toolkit research within the HCI community. To build up
an in-depth understanding of contemporary evaluation prac-
tices, we report the results of a meta-review based on an
analysis of a representative set of toolkit papers.
Dataset
To collect a representative set of HCI toolkit papers, we
gathered 68 papers matching the following inclusion criteria.
Publication Venue and Date, Keywords: we initially select-
ed 58 toolkit papers that were published since 2000 at the
major ACM SIGCHI venues (CHI, UIST, DIS, Ubicomp,
TEI, MobileHCI). We included papers containing keywords:
toolkit, design tool, prototyping tool, framework, API. All 58
papers comply with our proposed toolkit definition.
Exemplary Papers. We then identified 10 additional papers
published elsewhere, based on exemplary impact (e.g. cita-
tions, uptake) such as D3 [14], Piccolo/Jazz [6], and the Con-
text Toolkit [91]. Our total dataset includes 68 papers (Table
1). While other toolkit papers exist, our dataset serves as a
representative sample from which we could (1) gather insight
and (2) initiate meaningful discussion about evaluation.
Analysis and Results
The dataset was analyzed via several steps. One of the au-
thors conducted open-coding [16] on a subset of our sample,
describing the evaluation methods used in each publication.
Next, we collectively identified an initial set of evaluation
methods and their variations as used across papers. At this
point, four other co-authors performed focused coding [16]
on the entire sample. We continued to apply the codes to the
rest of the sample, iteratively refining and revisiting the cod-
ing schema. After coding all papers in our sample, we creat-
ed categories [16] to derive the overarching evaluation strat-
egies used by toolkit researchers, thus arriving at the four
evaluation strategies that we identify as (1) demonstration,
(2) usage, (3) technical evaluation, and (4) heuristic evalua-
tion. Table 1 summarizes the analysis, showing the count of
evaluation strategies seen in our sample. We caution that this
frequency count is not necessarily indicative of a strategy’s
overall appropriateness or success.

The following sections step through the four evaluation
types, summarized in Table 2. For each type, we discuss their
value and the specific techniques used. We then reflect on
challenges for that type, followed by opportunities to
strengthen the evaluation: opinions are based on our insights
gained from data analysis, our experiences and/or opinions
offered by other researchers. The result is a set of techniques
that researchers can use, on their own or in combination, to
assess claims made about their toolkits.
TYPE 1: DEMONSTRATION
The now famous “mother of all demos” by Douglas Engel-
bart [26] established how demonstrating new technology can
be a powerful way of communicating, clarifying and simply
showing new ideas and concepts. The transferability of an
idea to neighbouring problem spaces is often shown by
demonstrating application examples [83]. In our sample, 66
out of 68 papers used demonstrations of what the toolkit can
do, either as the only method (19/68) or in combination with
other methods (47/68). Demonstrations show what the toolkit
might support, as well as how users might work with it, rang-
ing from showing new concepts [32,91], to focused case
studies [4,96] to design space explorations [43,54,64].
Why Use Demonstrations?
The goal of a demonstration is to use examples and scenarios
to clarify how the toolkit’s capabilities enable the claimed
applications. A demonstration is an existence proof showing
that it is feasible to use and combine the toolkit’s components
into examples that exhibit the toolkit’s purpose and design
principles. These examples can illustrate different aspects of
the toolkit, such as using the basic building blocks, demon-
strating the workflows, or discussing the included tools.
Since toolkits are a ‘language’ to simplify the creation of new
interactive systems [30], demonstrations describe and show
how toolkits enable paths of least resistance for authoring.
In its most basic form, a demonstration consists of examples
exploring the expressiveness of the toolkit by showing a
range of different applications. More systematic approaches
include explorations of the threshold, ceiling or design space
supported by the toolkit. The threshold is the user’s ability to
get started using the toolkit, while ceiling refers to how much
can be achieved using the toolkit [73]. While demonstrations
may not show the full ‘height’ of the ceiling, they are an in-
dicator of the toolkit’s achievable complexity and potential
solution space. The principles and goals of the toolkit can
also be demonstrated through a design space exploration
which enumerates design possibilities [106] and gives exam-
ples from different points in that space.
Evaluation Techniques as Used in Demonstrations
Our sample reveals several techniques to demonstrate a
toolkit. These techniques are not mutually exclusive and can
be combined in different ways. The simplest unit of meas-
urement for demonstration is an individual instance. While
multiple instances can be described separately, researchers
may carefully select instances as collections to either explore
the toolkit’s depth (case studies) or its generative breadth

Table 2. A summary of the four evaluation strategies.

MiroLimited-time bonus on

http://chatw.ch/research-thinking

